第5章 ドリフトチューブリニアックの設計

第5章 ドリフトチューブリニアックの設計

1 一般論

- 1.1 概要
- 1.2 シャントインピーダンス
- 1.3 加速電場の制限
- 1.4 アクセプタンス
- 2 設計
 - 2.1 SUPERFISH によるセルの設計
 - 2.1.a セルの形とシャントインピーダンス
 - 2.1.b SUPERFISHのメッシュサイズの効果について
 - 2.1.c 共振周波数に影響を及ぼす諸量
 - 2.1.d ステムの電場分布への影響
 - 2.2 入射エネルギーの選択
 - 2.2.a 序
 - 2.2.b 4 極永久磁石
 - 2.2.c エミッタンス増加の問題
 - 2.3 PARMILA による設計
 - 2.3.a ドリフトスペースの効果
 - 2.3.b 第1タンクの加速電場の勾配
 - 2.4 ポストカップラーによる安定化
 - 2.5 要求される精度について
 - 2.6 まとめ

3 開発の現況

3.1 概要

3.2 4 極永久磁石

3.2.a 4 極永久磁石の試作と測定

3.2.b 永久磁石の放出ガス試験

- 3.3 ドリフトチューブの接合法
 - 3.3.a 電鋳法
 - 3.3.b EBW 法
 - 3.3.c レーザー法
- 3.4 モデルタンクの製作

第5章 ドリフトチューブリニアックの設計

1 一般論

1.1 概要

表1にドリフトチューブリニアック(DTL、図1)に要求されている主な パラメターを示す。周波数が従来の DTL の倍以上高い事、高周波電力のデューテ ィファクターが 3 % と高い事、平均加速電流が大きい事(400 µA) が特色であ る。そして、DTL の前には RFQ リニアックがあり、後にはカップルドキャビティ リニアック(CCL) が控えている事も重要である。最後に、いうまでもない事だが、 このリニアックは物理実験用の円形加速器の入射器であるという役割も重要な点 である。これらの特色は、リニアックに期待される描像をかなり明確に規定して くれる。即ち、性質の良いビームを安定に、建設計画に沿って順調に供給する事 である。こうした期待に答える為には、設計のある部分は充分な安全因子を考慮 して、保守的な形とならざるを得ない。しかし、要求されている仕様を満たす為 には、従来既に開発されている技術だけでは、限界があり、新しい設計と技術を 開発する必要がある。新しい技術の必要性は周波数が従来の2倍以上になった事 に由来する。

表1 主要な DTL のパラメーター

入射エネルギー	3	MeV
出力エネルギー	150	MeV
周波数	432	MHz
高周波パルス幅	600	μs
ビーム幅	400	μs
繰り返し周波数	50	Hz
ピーク電流	20,	mA

従来の2倍の周波数は、高い出力エネルギーを持つ RFQ リニアックと強力な永久 磁石の開発によって初めて可能となった。432 MHz で入射エネルギーが 750 keV の時は横方向の位相進み 60°を実現する為には、磁場勾配 330 T/m 程度が必要 である。この値は電磁石では殆ど不可能であり、又永久磁石でも難しい。必要な 磁場勾配はβ(v/c) に反比例するので、RFQ の特色は、大きいβを選択する点に 発揮される。

わずかのビーム損失でもリニアックの運転に支障を来す恐れがあるので、特 に高いエネルギー領域(CCL)においてビーム損失が少ない事(0.1% 以下)を目

図2 標準的なドリフトチューブの形

標にする。このようなビーム損失を達成するためには、加速管の加速電場と位相の厳しい精度が必要と同時に、低エネルギー領域においてビームの縦方向の広がりにも充分注意する必要があることが計算機によるシミュレーションからわかっている。注意深く加速電場と位相を調整したリニアックは、その結果として出力エネルギーの広がりは小さくなるが、加速管の製作精度に由来するエネルギーの広がりもあるので、1 GeV リニアックの出口でエネルギーの広がりの半幅を 0.2 %以下にする事を目標にする。

1.2 シャントインピーダンス

空洞の加速効率はシャントインピーダンス Z で表される。

$$Z = E_{\theta}^2 / (Pc/L)$$
(1)

ここで、Eg は平均加速電場、Pc は空洞の消費電力、L は空洞長さである。加速電圧は

(2)

 $V = E_{B}TL \cos\phi$

となるので(T は透過因子、 ø は安定粒子の位相角)、消費電力は

 $Pc = V^2 / (ZT^2L \cos\phi \ \cos\phi)$ (3)

と書ける。従って空洞の基本設計では、有効シャントインピーダンス ZT² を最適 化すれば良い。

1.3 加速電場の制限

リニアックの長さを 500 m 以下に押さえる為には、加速電場の下限が決ってしまう。 加速電圧 V = EgTLcos & より、V=1000 MV, T=0.8, L=400 m, Ø=30 とすれば、リニアック全体のおよその平均加速電場は Eg = 3.6 MV/m とな る。次に放電限界の目安を与えるキルパトリックの放電限界は次式で与えられる。

 $f = 1.643 \times 10^4 E^2 \exp(-0.085/E)$ (4)

f は周波数 (MHz)、E は放電電圧 (MV/cm) である。432 MHz では 20 MV/m となる。キルパトリックの目安のどの程度を採用するかは、放電テストをした上で、

長期の使用状況を考慮に入れて決めるべきであるが、ここでは、75%を上限とする。3 MeV 入射の場合のセルでは、表面最大電場 E は平均加速電場 Eg の 5 倍なので Eg= 3 MV/m となる。従って、DTL は 3 MV/m と選び、高βリニアックでは、さらに高い電場を設定する事にする。

1.4 アクセプタンス

リニアックが加速出来るビームの広がりの最大値をアクセプタンスと呼ぶ。 これはビームが持つ広がり(エミッタンス)より大きい事が必要である。縦方向 と横方向に分けて考える事が出来る。本節は参考文献1に従った。

粒子の縦方向の運動の方程式は

 $dW_{k}/dt = eEV_{s} (\cos\phi_{s} - \cos(\phi - \phi_{s}))$ $d\phi/dt = \omega W_{k}/(\gamma^{2}P_{s}V_{s})$ $E = E_{\theta}T, \phi = \phi - \phi_{s}, W_{k} = W_{s} - W, P = m_{\theta}c\beta\gamma$ $V = c\beta, \omega = 2\pi f, W = m_{\theta}c^{2}(\gamma - 1)_{o}$ (5)

₩ は運動エネルギー、P は運動量、添え字sは安定粒子を表す。
粒子の運動は位相平面(φ, W_k)の軌跡となる。安定な加速領域を与えるセパラト リックスでは、G = (P - P_s)/P_sにより運動量の広がりを定義すれば、

$$Gc = \pm \sqrt{2} \gamma^2 (\Omega/\omega) \sqrt{1 + \cos \phi - (\phi - \sin \phi + 2\phi_s) \cot \phi_s}$$
(6)

$$\Omega = \omega \sqrt{W_r} |\tan \phi_s| / (2\pi \beta \gamma^3)$$
(7)

 $Wr = eE_{g}T\lambda\cos\phi_{s} / m_{g}c^{2}$ (8)

Gc の最大値は $\phi=0$ とおくと

$$Gmax = 2\gamma^2 (\Omega/\omega) \sqrt{1 - \phi_s \cot \phi_s}$$
(9)

ここで $\lambda = c/f$, Ωは縦方向の位相振動の角周波数である。Eg=3 MV/m, $\phi_s = -30^\circ$, 432 MHz, 3 MeV 入射の時には、Wr=1.5x10⁻³, Gmax=0.026となり、 アクセプタン スのエネルギー幅は $\Delta W = m_g c^2 \beta^2 \gamma$ Gmax=0.16 MeVとなる。 加速できる位相幅については、セパラトリックスから

$$\Delta \phi = 3 | \phi_{\rm s} | \tag{10}$$

の形で良い近似となる。従って、加速電場の強さと安定位相角の選び方はアクセ プタンスの大きさを決める重要なパラメターとなる。

| φ | <<1 の微小振動では (5)式は簡単になって、

$$\phi(\tau) = \Phi(\tau) \sin \Psi(\tau), \quad \tau = \omega t \tag{11}$$

とおくと、位相平面上の運動を表す楕円は

$$\phi^2 / \Phi^2 + W_k^2 / X^2 = 1 \tag{12}$$

$$X = \gamma^2 P_s V_s (\Omega / \omega) \Phi$$
(13)

となる。楕円の面積は一定だから

.

$$\Phi = \text{const.} / \sqrt{\gamma^2 P_s V_s \Omega / \omega}$$
(14)

$$X = \text{const.} \sqrt{\gamma^2 P_s V_s \Omega / \omega}$$
(15)

とおける。Ga = ((P-Ps)/Ps)max = W_k / P_sV_s だから

Ga = const.
$$\sqrt{\gamma^2/(P_s V_s) \Omega/\omega}$$
 (16)

これらの式から、加速が一定(Wr = const)の時のパラメターの変化の様子は

$$\Omega/\omega \sim \gamma^{-1} P_s^{-1/2}, \ \Phi \sim P_s^{-3/4}, \ \chi \sim P_s^{3/4}, \ Ga \sim \gamma P_s^{-5/4}$$
 (17)

となる。これらの関係は 2.5 節にて使用する。縦方向の位相進みは

$$\Delta \Psi(t) = \int \Omega(t) dt$$
(18)

と表される。(7),(18)からビームがβgからβ1まで加速される時の位相進みは

$$\Delta \Psi = 2\kappa \left(\sqrt{\beta_1} - \sqrt{\beta_2} \right) \tag{19}$$

 $\kappa = \sqrt{2\pi} |\tan\phi_s| / Wr$

ここで添え字 0,1 は加速の初めと終わりを表す。 横方向の運動方程式は次式であたえられる。

 $d^{2}x/ds^{2} + (k^{2} + \Delta rf + \Delta sc)L^{2}x = 0$ (20)

 $k^2 = \pm eB' / (m_{0}c\beta \gamma)$

 $\Delta rf = \pi eE_{0}Tsin\phi / (m_{0}c^{2}\lambda\beta^{3}\gamma^{3})$

 $\Delta sc = 3ZeI\lambda (1-f(p))/(8\pi m_0 c^2 r^2 b\beta^2 \gamma^3)$

ここで s=z/L, L=2 β λ , Δ rf は電場の発散力、 Δ sc は空間電荷効果による発散 力, Z = 377 Ω , I は電流、f(p) はバンチの形状因子、r と b はバンチの横と 縦の大きさを表す。I=20 mA, ϕ =-30 の時に大きさの比 (Δ sc/ Δ rf) を考える。 KEK の200 MHz 陽子リニアックでは、Eg=1.5 MV/m, I=20 mA とすれば 0.30 とな る。これに対して、432 MHz リニアックでは、2 MeV 入射で 0.11, 3 MeV 入射で 0.067と小さくなっている。 Δ rf と磁石による収束力の比は、432 MHz, 3 MeV 入 射で位相進み 60° の時に 0.014 となるので、磁場勾配を決める時には考慮する。 (20) 式の一般解は

 $x = (a_{\theta} / \sqrt{\beta_{max}}) \sqrt{\beta_{r}} \cos(\sigma + \delta)$ (21) $\sigma = \int ds / \beta_{r}$

ここで β_r はベータートロン関数で収束系と同じ周期を持つ。 β_{max} は β_r の最大 値、 σ は位相進み、 a_g はビーム孔の半径である。 σ と β_{max} の具体的な表式は 2.2.c 節に示してあり、FODO ラティスの横方向の運動の基本的なパラメターは 2.2.c にまとめて記述されているのでここではアクセプタンスについて考えてみ る。横方向の規格化アクセプタンス A_n は次式で与えられる。

 $A_{n} = \beta \gamma a_{0}^{2} / \beta_{max} = \beta \gamma \sigma a_{0}^{2} / ML$ $M^{2} = \beta_{max} / \beta_{min}, \beta_{max} \beta_{min} = L / \sigma$ (22)

β max, β min は横方向の振動の振幅関数の最大値と最小値、L=2βλは収束の周期、 σは位相進みを表す。したがって、ビーム孔の大きさと位相進みの選び方でアク セプタンスは変わる。周波数 432 MHz で永久磁石を用いる場合には、得られる磁 極面の磁場の強さ(B = B'ag)と充分なアクセプタンスの大きさが微妙にバラン スされている状態となる(2.2.b に詳述)。ビームの最大半径を r とすれば、 r/ag = $\sqrt{E/A}$ なので(E はビームのエミッタンス、A はアクセプタンス)、ビー ム半径を 70 % に選べば E/A~0.5, 50 % ならば E/A~0.25 が必要なアクセプタ ンスとなる。実際、E/A~0.25 の場合には、起こりうるさまざまな加速途中の摂 動に対して、満足できる程度のビーム損失しか起こさない事がシミュレーション で示されている(文献2)。

2 設計

2.1 SUPERFISH によるセルの設計

2.1.a セルの形とシャントインピーダンス

セルの形は SUPERFISH を用いた計算により、有効シャントインピーダンス の最適化を行って決める。その場合に以下の制限を設けた。第一に、表面最大電 場の大きさが キルパトリックの放電限界の 75 % 以下になるようにした。第二に、 ビーム穴の直径を 10 mm とした。第三に、タンクの直径とドリフトチューブの直 径は二段階の変化にとどめた。第四に、ドリフトチューブの端面は加速軸に対し て直角になるようにした。セルの基本形を図2に示す。図3、4 に 3 MeV にお ける ZTTと最大表面電場の振舞いを示し、図5 に採用されたZTTの様子を示す。表 2 にまとめを示す。

表2 DTL の空洞のパラメーター

タン	ク番号	1	2	3	4-13	
入射	エネルギー	3	12.8	22.6	36.5 - 148	MeV
タン	ク直径	44	44	44	42	cm
セル	 	55	33	37	217	
D/T	直径	8	8	7	7	cm
	コーナー半径	1	2	2	2	cm
	ノウズ半径	0.5	0.5	0.5	0.5	cm
	ビーム孔半径	0.5	0.5	0.5	0.5	cm

- 60 -

— 61 —

2.1.b SUPERFISHのメッシュサイズの効果について

βが 0.08から 0.5 まで大きく変わるので、計算に使用するメッシュの 大きさを変えなければ、共振周波数の計算誤差が大きく変わってしまう。そこで 予め、βの複数の代表点に対してメッシュの大きさに対する計算誤差を評価して、 それが一定になるようなメッシュの大きさを選ぶことにする。メッシュを細かく すれば真の値に近ずくのであるが、それは計算機のメモリー容量と計算時間によ って制限されるので、妥当なメッシュの大きさが決まる事になる。図6にメッシ ュの大きさと共振周波数の変化の様子を示す。

2.1.c 共振周波数に影響を及ぼす諸量

タンクの共振周波数について、不確定要素には次のものが考えられる。

- ステムによる摂動 Δfs
 チューナーによる摂動 Δft
- 3) コンピューターの誤差 Δfc
- 4) ポストカップラーによる摂動 Δfp
- 5)安全のためのオフセット Δfm
- 6)工作誤差 ∆fe

従って、目標周波数を fg、計算周波数をfc とすれば、

 $f_{\theta} = fc + \Delta fs + \Delta ft + \Delta fc + \Delta fp + \Delta fm + \Delta fe$

Δfe は前項の議論により、空洞全体にわたって、60 kHzとなるようにメッシュの大きさを選ぶ。

 Δft は実験からほぼ正しい値が予想される。図7にDTL におけるチューナー による周波数変化の様子を示す。実用的な使用範囲は、図の左部分のチューナー の挿入長さに対して、変化量が比例する部分である。チューナー半径を r, 長さ を S, 本数を N, タンクの半径を R, 長さを L, 共振周波数を f とすれば、 $\Delta f/f = kr^2 SN/(R^2L)$ 、ここで k = 0.551 は実験値から求めた定数である。

Δfs は低エネルギーのタンクでは特に重要である。それは、値自体が大きい 事と、その大きさの変化の割合が大きい事による。図8に第1タンク内のΔfs を 示す。Δfs をタンク全体に共通する量とタンクの両端の差分に分解して、各々を 別の方法で補正する。即ち、共通量はタンクの直径をわずかに大きくする事で相 殺して、差分量はセルの共振周波数に組み込む事にする。Δfs が電場分布とどの ように関係するかは、2.1.d ステムの電場分布への影響で詳述する。

Δfp はΔfs と同じ扱いが出来る。工作誤差 Δfe は全体としては零になる

— 63 —

事を期待するが、チューナーの可変範囲を決める時に考慮しなければいけない。 タンクの直径誤差が ΔD = 0.1 mm とすれば、Δf/f=-ΔD/D だから、

Δf = 100 kHz となる。ドリフトチューブの加工誤差は、タンク内で平均すれば 零となると期待できる。Δfm は本来は考慮しなくてよい項目であるが、共振周波 数をタンクの組立の後で変化させる時に、空洞の周波数を上げるほうが、技術的 に簡単なので、予め、周波数の設定値を少し下げておく。

2.1.d ステムの電場分布への影響

図9に第1タンクのなかのステムによる共振周波数の変化の差を示す。この ように周波数の摂動が、ランダムでなく、一定の割合で変化するように分布する 時は、タンク内の電場分布が大きく乱されてしまう。アルバレリニアックの等価 回路を用いた解析が馬場等(文献3、4)によって行われている。電場分布は次 の微分方程式で近似される。

 $d^{2}E(z)/dz^{2} + m(z)E(z) = 0$

(23)

 $m(z) = k'(f-f_n)$

k' = $(2\pi/L)^2/(f_2 - f_0)$

ここで、f はタンクの周波数、fn はセルの周波数、L はタンク長さ、f2 は TMO 12 モードの周波数、f8 はTMO10 モードの周波数である。第1 タンクの場合をコ ンピューターで計算した結果を図10に示す。入射付近の電場は 60 % 程度に低 下する。この程度の傾きはポストカップラーにより安定化すれば平坦化出来ると おもわれるが、その場合には、傾きを補償するためのポストモードが大きく励起 される事になるので、ポストモード自身のビームに対する影響等を新たに考察す る必要がある。従って、現時点では、ステムの影響をセルの共振周波数に組み込 んで補償するような設計法とする。なお、チューナーの周波数可変範囲と個数は、 ステムによる電場の傾きをチューナーだけで補正出来るように選ぶ。

2.2 入射エネルギーの選択

2.2.a 序

DTL の入射エネルギーの選択は、初段の RFQ と後続の DTL の互いに相反する要請の妥協点となる。まず、RFQ の出力エネルギーを大きくすると、加速

図9 ステムによる共振周波数の変化(共通の変化分を差し引いている)

図10 ステムによって傾く第1タンクの電場分布

器としての効率が低下する。その低下は、ほぼ 1/βλ に比例する。しかし、RF Q の主な役割は捕獲効率の高い事、出力エネルギーが高い事、バンチングが行わ れている事などにあるので、加速効率の低下はある程度許容できる。次に、RFQ の長さが長くなって良い電場分布が得られにくいという議論がある。これは、周 波数を 432 MHz に選ぶと困難が大きいが、半分の 216 MHz に選べば、問題は無 い。しかし、その場合には、新たに、高周波電源が複雑になる事、ビームの位相 幅が2倍になる事などの問題を生じる。周波数が 432 MHz の場合でも、いくつか の解決策がある。第一は作り方の問題である。第二は、忌避すべきモードを抑圧 する機構、いわゆる電磁場分布の安定化機構の採用である。第三には、技術的な 困難さから長い RFQ の製作が難しければ、分割製作する方法がある。ビームのエ ミッタンスに対して、加速器のアクセプタンスがどの程度あれば良いかは、その 加速器に要請される色々な条件に依存するので一般的な答は難しいが、1 GeV リ ニアックの初段としての RFQ の観点からは、アクセプタンスはエミッタンスより も大きい事が望まれる。アクセプタンスの境界付近のビームは、位相とエネルギ ーの新たな広がりを与え、1 GeV リニアックのビーム強度が強くなる時に、高い エネルギーのビームロスを起こすのではないかと心配される。詳細なシミュレー ションが必要と思われる。

2.2.b 4 極永久磁石

DTL の入射エネルギーはある程度高い事が望ましい。四極永久磁石を使 う事を前提として、位相進みを 60°に選んだ時に必要な磁場勾配を表3に示す。 この勾配を達成出来る材料として、サマリウムコバルト系(SmCo)とネオジウム 鉄ボロン系(Nd)の二つが候補に上がる。

表3 位相進み 60°に相当する磁場勾配

入射エネルギー	2	2.5	3	MeV
磁場勾配	228	201	184	T/m

ネオジウム鉄系は磁石としての特性に優れ、加工性にも優れているが、以下 の欠点を持つ。キュリー温度が 300 ℃程度の低さである、錆安い、放射線により 劣化しやすい(文献5)。従ってこの磁石を使う場合には、ドリフトチューブに 組み込む方法として、熱を伴う方法は使えないので、電鋳法によるか、または、 溶接をしないで真空中にさらす事になる。真空中にさらす場合には、磁石の放出 ガスの問題を検討しなければならない(3.2.b 節)。又、ドリフトチューブの冷 却水のリークに特に注意しなければいけない。色々な危険の可能性をどう評価す るかが、ポイントである。電鋳法により、有効な錆対策をした上で、低エネルギ ー領域にて使用するのが安全と思われる。

サマリウムコバルト系磁石は、その特性はネオジウム系に比べて些か劣るが、 キュリー温度が 700 ℃以上と高いので従来の溶接法が使用できる可能性があり、 耐放射線特性も良い。

入射エネルギーを選ぶ最低条件として、必要な諸特性を満足する四極永久磁石 が得られる事が必要である。16 分割の場合、磁石の内径を r₁、 外径を r₂ とす れば r₁の磁極面における磁場は(文献 6)、

 $B = 1.87 Br (1 - r_1/r_2)$

ここで Br は残留磁束密度である。表4 に r₁= 7mm, r₂= 23mm の場合に得られる 磁場勾配を示す。

表4 四極永久磁石で期待出来る磁場勾配

	NEO MAX-35H	CORMAX-2300	CORMAX-2700
Br	1.19	0.945	1.035 T
B'	221	176	192 T/m

NEOMAX は Nd系、CORMAX は SmCo系の磁石である。

磁場分布は計算コード PANDIRA により解析できる。図11に試作したモデルの 磁束分布の計算結果を示す。

2.2.c エミッタンス増加の問題

従来の200 MHz, 750 keV 入射の DTL では横方向のエミッタンスの増加が観測 されている(文献7)。この増加は二つの理由により説明出来るとの提案がされ ている(文献8)。第1は、ビームの中の荷電分布密度が一様でない場合に、非 線形の力を生じる事から生じる。第2はビームの静止系における縦方向と横方向 の運動エネルギーが入射時点において違っているときに、両者のバランスが達成 される過程でエミッタンスの増減が起こる(文献9)。エミッタンスの増加は次 式で表される。

 $\varepsilon_{zf}/\varepsilon_{zi} = [1 - 2(P_i - 1)/3P_i + (G/3P_i)(\sigma_{0t}^2/\sigma_t^2 - 1)U_{ni}]^{1/2}$

図11 4極永久磁石の形と計算された磁束分布

 $\varepsilon_{tf}/\varepsilon_{ti} = [1 + (P_i - 1)/3 + (G/3)(\sigma_{\theta t}^2/\sigma_t^2 - 1)U_{ni}]^{1/2}$ (25)

 $P = (\varepsilon_z/\varepsilon_t)^2/(b/a)^2$ (26)

 $G = (2/3)(1 + (M/(1-M))(b/a)^2)$

添え字 f, i はビームの加速後と前を表し、t,z は横方向と縦方向を表す。 ε は rms エミッタンスである。P はパーティションパラメーターと呼び、ビームの静 止系における縦と横の運動エネルギーの非対称性を表している。σ は位相の進み を表し、添え字 0 は空間電荷効果を考慮しない時を表す。a はビームの rms 半 径、2b は rms のパンチ長さを表す。M はビームの形状因子であり、a=b の球状 ビームでは 1/3 となる。Un はビームの電荷分布が一様でない時にビームの作る 電磁場のエネルギーから、仮想的に分布が一様であるとした時のエネルギーを差 し引いた量で、非線形な場のエネルギーと呼ばれる。

入射ビームとして RFQ ビームを仮定すれば、既にある程度荷電分布の一様性 が達成されていると考えられるので Uni = 0 とおく。この場合には、DTL の入射 部における縦横の位相進みの選び方と入射ビームの縦横のエミッタンスの選び方 が重要となるので、パーティションパラメターについて詳しくみてみよう。

アクセプタンスにマッチングさせたビームは次のように書ける。

$$\varepsilon_{t} = \sigma^{t} a^{2}/2\beta \lambda$$

$$\varepsilon_{z} = \sigma^{z} b^{2}/2\beta \lambda \qquad (27)$$

σは収束の周期(2βλ)の中の位相進みを表す。これから P = 1 という条件を 書き直すと、

$$\varepsilon_z / \varepsilon_t = \sigma^t / \sigma^z = b/a$$
 (28)

となる事がわかる。空間電荷まで考慮した位相進みの表式は(文献10、9)以 下のようになる。

$$\sigma^{t} = \cos^{-1}(\cos\sigma_{0}^{t} + 301\lambda^{3}(3b-a)/(W_{0}a^{2}b^{2}))$$
(29)

$$\sigma^{z} = 2\cos^{-1}(\cos\sigma_{B}^{z} + 151\lambda^{3}/(W_{B}ab^{2}))$$
(30)

$$\sigma_{0}^{\tau} = \cos^{-1} \left[1 - (1/2 - \Lambda/3) \Lambda^{2} \theta_{0}^{4} - 2\pi E_{0} T \lambda \sin \phi_{s} / W_{0} \beta \right]$$
(31)

$$\sigma_{\varrho}^{z} = \cos^{-1} \left[1 + \pi E_{\varrho} T \lambda \sin \phi_{s} / W_{\varrho} \beta \right]$$
(32)

$$B' = W_{B} \theta_{B}^{2} / (c\beta \lambda^{2}), \quad \Lambda = L_{Q} / L$$
(33)

$$\beta_{\rm max}/L = 2 \left[1 + (1 - \Lambda/2) (\Lambda/2) \theta_0^2 - 3\Delta/4 \right] / \sin\mu$$
(34)

ここで、 I は平均電流、W_a は静止質量、L_a は4極磁石の長さ、B は磁場勾配 $\Delta = \Delta r f L^2$ である。

注) σ₀^zは周期βλで定義されているので、周期 2βλの量と比較する時は、 2 倍する。

空間電荷効果の強さを表すスペースチャージパラメターを次式で定義する。

$$\mu_{t} = 1 - (\sigma^{t} / \sigma_{\theta}^{t})^{2}$$

$$\mu_{z} = 1 - (\sigma^{z} / \sigma_{\theta}^{z})^{2}$$
(35)

次に、バンチ長さをパラメターとしてパーティションパラメターを計算してみる。 ここで I=20 mA, ϕ_s =-30°, σ_u ^t=60°, ε_t (normalized)=0.28 π mm.mrad とした。 P = 1 となる時のパラメターを表5に示す。

表5 P=1 となる時のの加速パラメター

入射エネルギー	2	2	3	3	MeV
加速電場	2	3	2	3	MV/m
σ ₀ ^z	13.3	16.3	12.3	15.1	degree
σ ^z	19.3	22.9	17.9	21.4	degree
$\sigma^{z}/\sigma_{\theta}^{z}$	0.73	0.70	0.73	0.71	
μ _z	0.474	0.507	0.471	0.498	
$\sigma_{\theta}{}^{t}$	60	60	60	60	degree
σ^{t}	48.2	45.4	49.1	46.6	degree
σ^{t}/σ^{t}	0.80	0.76	0.82	0.78	
μ_{t}	0.355	0.427	0.33	0.397	
b	22.0	17.4	19.5	15.5	degree

- 70 -

図12に P の変化を示す。横軸は入射ビームの位相幅(rms)である。この図よ り、電場が 3 MV/m で入射エネルギーが 3 MeV の時は、ビーム幅(rms半値幅) は 15.5°が適している事がわかる。入射エネルギーが 2 MeV に下がると最適な ビーム幅は 17.4°になる。加速電場を 2 MV/m に下げると最適ビーム幅は 19.5°(3 MeV 入射), 22.0°(2 MeV 入射)になる。

横方向の位相進みについて考えてみよう。横方向のビームのエンベロープの方 程式は

 $r^{*} + k^{2}r - E^{2}/r^{3} - KI/r = 0$

 $K = (I/I_0) 2/(\beta^{3}\gamma^{3})$

 $I_g = 4\pi \epsilon_{gm_B} c^3/e$

ここでビームの半径 r とエミッタンス E はrms の値であり、K は空間電荷効果 の比例定数、 l は電流、 ε k は真空中の誘電率を表す。電流が 20 mA の時は、空 間電荷の項によるビーム半径の広がりへの寄与は 1 % 程度なので、以後は省略す る。マッチングしたビームの半径は

 $r = \sqrt{E/k} = \sqrt{2\beta \lambda E/\mu} = \sqrt{2\lambda E_n/\mu \gamma}$

と表されるので、位相進みをリニアック全体にわたって、一定に選べば、ビーム 半径もほぼ一定になる。又、ある程度大きいμを選ぶ方が、ビーム半径が小さく なって、高周波電場と収束磁場の非線形な部分を使わずにすむから有利であり、 いわゆるスタビリティダイアグラムの安定領域の中心付近を使う事になって有利 である。 ここでEn は規格化エミッタンスを表す。

2.5 節に述べるように、4 極磁石の不完全さによりビームのエミッタンスは 増加する事が予想されるので、加速するに従って、位相進みを大きくして、ビー ム半径を絞る方法が考えられる。磁石の有効長さを 33 mm、磁場勾配を 175 T/m として、すべての磁石を同じ強さと大きさで作れば、3 MeV の位相進みは 59°と なり、150 MeV での位相進みは 64°となるので、平均半径の比は

r(150MeV)/r(3MeV) = 0.88 となり、ビーム半径を小さく出来る。この場合のスタ ビリティダイアグラムを図13に示す。ここで¢はモジュレーションの比であっ て ($\sqrt{\beta \max/\beta \min}$)、 γは (34) 式 $\beta \max/L$ を表している。

図13-1 3 MeV におけるスタビリティダイアグラム

図13-2 148 MeV におけるスタビリティダイアグラム

2.3 PARMILA による設計

SUPERFISH のデータを基に、計算コード PARMILA を使って DTL の形状を計 算する。既に、KEK の 40 MeV 陽子リニアックの増設の時に、必要な計算コード の修正を行っているので(参考文献11),ここでは若干の修正が必要なだけであ る。PARMILA では基本的には 加速ゲインとセルの長さを $\Delta W = eE_0 T \beta \lambda \cos \phi$ 、 $L = \beta \lambda$ で求めている。加速前後の β の間でイタレーションを行って L と ΔW の 精度をあげている。

2.3.a ドリフトスペースの効果

長い DTL では、タンクとタンクの間をどの程度あけるかが、ビームの診断装置の空間とも関連して重要である。そこで、タンク間の距離をセル長さの整数倍に選べるように、収束磁石も含めて書き直した。タンクとタンクの間はドリフトスペースなので、縦方向のエミッタンスが悪化して、それは運動量 P の広がりの 増加となって次式で表される。

 $G_2/G_1 = (1 + a^2/2 \pm a\sqrt{1 + a^2/4})^{1/2}$ (36) G = (P - Ps)/Ps $a = 2\pi S\Omega/(\beta \lambda \omega)$

ここで、添え字 1,2 は自由空間の前後、添え字 s は安定粒子、Ωは縦方向の位 相振動の角周波数、S は自由空間の長さを表す。上式より、βの小さい所で影響 が大きい事がわかる。 第1タンクの加速エネルギー 10 MeV 付近では、Ω/ω =0.042, S=2βλとすれば、a=0.336 となって、運動量の広がりの増加は 16% に のぼる。ビームのシミュレーションによれば、タンク間に自由空間を何もとらな い場合に比べて、13 タンクのすべての間を 1βλとすれば、縦方向のビームのエ ミッタンスは 4.6 % 増加し、さらに、最初の二つの空間を 4βλ、次の三つを $3β\lambda$ 、残りを 2βλと選ぶ時には、25 % 増加する。図14にそれぞれの場合の ビームのエミッタンスを示す。これは DTL のアクセプタンスに対応する出力ビー ムである。従って、タンクとタンクの間は 1βλを基本とする。

図14-1 エミッタンス(出口、平坦電場分布、0 βλ)

図14-2 エミッタンス(出口、平坦電場分布、1 β λ)

2.3.b 第1タンクの加速電場の勾配

KEK の 20 MeV 陽子リニアックでは、入射時に電場は 1.5 MV/m であり、そ の後 0.04 MV/m の割合で増加して、最後に 2.1 MV/m の電場となる。この電場分 布を変えてデータが取られているが(文献11)、特に良い分布があるとの結論 は得られていない。そこでシミュレーションによって、加速電場と出力ビームの 関係を考察した。第1タンクの電場を 1.86 MV/m から 2.93 MV/m まで距離に対 して直線的に変える。結果を表6に示す。図15 に RFQ ビームに対応する出力 ビームのエミッタンスを示す。CCL の周波数に対応して位相幅は 3 倍してある。

表6 平坦電場と勾配電場の比較

	平坦電場	勾配電場	
第1タンクの電場	3.0	1.86-2.93	MV/m
その他のタンクの電場	3.0	3.0	MV/m
タンク長さ	75.74	76.28	m
RF 電力	8.96	8.88	MW
セル数	342	352	
Aout/Ain	1.05	0.95	
全透過粒子数	617	490	
RFQビームに			
たいするEout/Ein	1.9	1.45	
$\Delta \phi$ out	8	8	degree
∆ Wout	0.52	0.50	MeV
1 GeV の加速後の			
Δ₩(90% 全幅)	3.48	4.44	MeV

表6の中で、Ain は縦方向アクセプタンスの中の全透過粒子を(Ø,W) 位相 平面上の楕円で近似して求める。Aout は Ain に対応する粒子をタンクの出口で 測ったもの。Ein,Eout は RFQ ビームに相当するエネルギーの広がりと位相の広 がりを持つビームに対してエミッタンスの比を求めたもの。図15に示されたエ ミッタンスを楕円で近似しているので、あまりにこの数字を信頼するのは危険と 思われる。表6ではアクセプタンスに比べて小さいエミッタンスを持つビームで は、縦方向のエミッタンスの増加は平担な電場分布では 90%であるのに対して、 勾配のある電場分布では 45% となっている。しかし、入射部の電場が低いので勾 配型のアクセプタンスは 18% 小さくなっている。これらのビームを次段の CCL へ (位相角-25°を中心に)入射させてみると、加速後のエネルギーの広がりは、

図15-1 平坦型電場分布による RFQ ビームの加速結果

図15-2 勾配型電場分布による RFQ ビームの加速結果

図16-1 CCL の入射位相に対する捕獲効率(RFQ ビーム)

図16-2 CCL の入射位相に対するエネルギー幅(RFQ ビーム)

図19 安定化した時の電場分布 (KEK 40 MeV linac)

— 78 —

平坦型では 3.48 MeV,勾配型では 4.44 MeV になっている。このシミュレーショ ンでは DTL の入射ビームとして、横方向のエミッタンスはゼロで、縦方向はエネ ルギーと位相にランダムな広がりを与えた粒子集団を用いた。次にDTL のそれぞ れのタンクの間に 1βλの自由空間をいれて実際のリニアックに近い形にしてか らビームを加速して、それを CCL で加速した結果を図16に示す。図の横軸は CCL への入射位相である。平坦型と勾配型では顕著な差は見られない。エネルギ ーの広がりが最小になるのは、平坦型では入射位相 -30°の時に 2.22 MeV, 勾配 型では -25°の時に 2.58 MeV となった。この様に、CCL にて加速後のビームを みると、どちらかと言えば平坦型の方がエネルギーの広がりが小さくなる。勾配 型ではドリフトチューブの個数が 10 個増え、ポストカップラーかチューナーを 使って勾配を作り出す事により、ポストモードの励起、電場の設計値からのずれ 等の問題が各々生じる。これらの点より、第1タンクの加速電場は平坦とする。

2.4 ポストカップラーによる安定化

ポストカップラーによる電場の安定化はロスアラモスで開発されて以来(文 献12)他のドリフトチューブリニアックに採用されてきた(文献13)。この 方法では、ポストカップラーと呼ぶ円筒を、ドリフトチューブを目指して、空洞 の側壁から交互に挿入する(図1)。ポストはドリフトチューブとともに共振回 路を形成して、通常の加速モード(TM01n)の下に、ポストモードを形成する。こ の二つのモードを適切にチューニングすれば(図17)、等価的に $\pi/2$ モードで タンクを励起する事になって、空洞の安定度が増加する。KEK では 40 MeV 陽子 リニアックにポストカップラーが使用されている(文献14)。電場のゆらぎを D= $\frac{1}{2}$ | Ei - Eave | と定義した時の、チューニングによる D の変化の様子を 図 18に示す。Ei は i 番目のセルの平均電場、Eave はタンク全体の平均電場を表 す。安定化が達成された時の電場分布を図19に示す。ポストカップラーによる 安定化の等価回路(図20)は西川により提案され(文献15)、コンピュータ ー計算による解析では、実験事実を良く説明出来る事が示された(文献14)。

図20 ポストカップラーの等価回路

2.5 要求される精度について

実際のリニアックは、理想のありかたからは程遠いものとなる。第一に工作 精度の問題があり、第二に加速電場の強さと位相のチューニングが適正な値から ずれる。これらのミスチューニングはビームのエミッタンスの増加をもたらす。 加速ゲイン ΔW=EgTLcosφ, L=βλより、

$$\Delta \phi_{s} = \cot \phi_{s} \left(\Delta E_{\theta} / E_{\theta} + \Delta T / T + 2\Delta \lambda / \lambda \right)$$
(37)

安定位相の変化は(13)式より運動量の広がりを増加させるので

$$\Delta Ga = (\Omega / \omega) | \Delta \phi_{s} | \qquad (38)$$

電場がずれる時には、上の2式から

$$\Delta Ga = \cot \phi_{s}(\Omega / \omega) \Delta E_{n} / E_{n}$$
(39)

セル中心がδ2 ずれると、位相のずれを生じて

$$\delta \phi = 2\pi \, \delta \, \mathbb{Z}/\beta \, \lambda \tag{40}$$

加速の関係式 $\Delta P = eE_0 TL \cos \phi_s / Vs$ を用いると、電場のエラーと位置のエラー と縦振動の振幅の増加の関係は

 $\delta G = \delta (\Delta P)/Ps = (Wr/\beta \gamma) (\delta E_0/E_0 - \tan \phi_s (\delta \phi)) \quad (41)$

リニアック全体の効果を見積る為には、n番目のセルの摂動がリニアックの出口 に及ぼす影響を計算して、全てのセルの和をとり、全ての粒子について平均操作 をしなければいけない。結果を書くと

$$\langle \Delta \, \mathrm{Ga} \rangle = \sqrt{-(\mathrm{N}/2) \left[\langle \delta \, \mathrm{G} \rangle^2 + (\Omega/\omega)_{\mathrm{N}}^2 \langle \delta \, \phi \rangle^2 \right]} \tag{42}$$

$$\langle \delta \phi \rangle = 2\pi \langle \delta z / \beta \lambda \rangle$$
 (43)

$$\langle \delta G \rangle = (Wr/\beta_N)\sqrt{\langle \delta E_0/E_0 \rangle^2 + 4\pi^2 \tan^2 \phi_s \langle \delta Z/\beta \lambda \rangle^2}$$
(44)

ここで N はセル数、添え字 N は最後のセルの値を意味する。

3 MeV から 1000 MeV までの加速を考えてみる。入射の時の運動量の広がり を 0.5 % ($\Delta E = \pm 30 \text{ keV}$) と仮定する。(17)式に従ってダンピングが起こるの で、150 MeV では G=4.8x10⁻⁴, 1 GeV では G=2.1x10⁻⁴ となる。これらの理論値 に、ドリフトスペースによる G の増加分と各種のエラーによる増加分があわさっ て、実際の運動量の広がり (ΔG) となる。ドリフトスペースによる増加分は、シ ミュレーションから G=5.3x10⁻⁴ と推定される。加速管を DTL と CCL の二つに わけて、それぞれに於ける エラーによる ΔG は 1 GeV リニアックの出口で等し くなると仮定すると、

 $<\Delta G>^2 = 0.00119 < \delta E/E_{g}>^2 + 0.775 < \delta Z/\beta \lambda>^2$ (45)

δ E とδ Z の効果が等しいと仮定すれば、1 GeV の運動量の広がりに対応して表 7 のように δ E とδ Z の精度が決まる。

表7 電場とセルの位置に要求される精度

運動量のひろがり G	0.13	0.2	%
エネルギーの広がりΔE	2	3	MeV
< 8 E0/E0>	0.014	0.03	
<δZ/βλ>	5.6	11.7	X10 ⁻⁴

3 MeV 付近のドリフトチューブの精度は 各々32µm, 66 µm となる。1.4 % 以下 の電場のゆらぎは、ポストカップラーによる安定化をすれば達成出来ると思われ る。この結果から、1 GeV リニアックのエネルギーの広がりは半幅で 2 MeV 以内 に抑える事を目標とする。

横方向に必要な精度は縦方向と似た手法で求める事が出来る。ある磁石中心のビーム軸からの平均のずれを <Δr> とする。磁石の中心軸が傾いた事による磁石出口のずれも <Δr> と同じ大きさと仮定する。これらのエラーにより、ビームのエミッタンスは位相平面上でずれを生じる。エミッタンスの振幅の増加は

 $\langle \delta \mathbf{r} \rangle = (3K^2/\nu) \langle \Delta \mathbf{r} \rangle$ (46)

ここで $K=D\sqrt{eB'/P}$, $\nu = S/\beta_{max}$, $S=2\beta\lambda$, D は磁石長さである。磁場勾配 (G=B')が平均 < ΔG > ずれており、また磁石がビーム軸まわりに < $\Delta \phi$ > 回転し ているとすれば、エミッタンスに歪みを与えることになり、それはエミッタンスの振幅 AEの増加となる。

$$\langle \delta A_{\mathsf{E}} \rangle = A_{\mathsf{B}} \left(\frac{\mathsf{K}^2}{\nu} \right) \sqrt{\langle \Delta G/G \rangle^2 + 12 \langle \Delta \phi \rangle^4}$$
(47)

A₂ は初めの振幅を表す。上式より K²/ν を小さく選ぶ方がエラーに対して強い 事がわかる。N 周期の収束システムとすれば全体のエミッタンスの振幅の増加は

$$\langle \Delta A \rangle = \sqrt{N} \sqrt{\langle \delta A_{\rm E} \rangle^2 + \langle \delta r \rangle^2}$$
(48)

ここで初めのビーム半径を 2 mm と仮定して、許容される半径の増加をビーム孔 の 80 % とする。また回転は 1° と仮定して、その他の項のエミッタンスの増加 への寄与を等しいとする。位相進み 60°を仮定すれば、K=0.87, ν=0.62 となり、 表8に示した許容誤差を得る。ビーム孔半径が 5 mm の時の許容値は、相当にき つい値なので、高いエネルギーの部分でビーム孔を直径 15 mm に広げると、半径 方向のずれの許容値は 59 μm,磁場勾配の許容値は 8.8 % になる。

しかし、この場合の DTL 出口のエミッタンスは、次段の CCL のアクセプタ ンスの6割程度の大きさになってしまうので、実際にはこれよりも厳しい条件が 必要と予測される。

表8 磁石に要求される精度

ビーム孔直径	10	15	mm
磁場中心の変位	29	59	μm
磁場勾配の揺らぎ	4.4	8.8	%
磁石の回転	1	1	degree

2.6 まとめ

PARMILA により計算した結果を表9に示す。第1タンクの詳しい形を表10 に示す。ビームのシミュレーションで得られたアクセプタンスの形を図21に示 す。対応するビームの DTL の出口におけるエミッタンスを図22に示す。これら をまとめて表11に示す。第1タンクの安定位相はアクセプタンスを広げる為に -30°と選び、その他のタンクは -26°とした。利用電力 1 MW のクライストロ ンを想定している。

432 MHz DTL 6 表

C
◄
z
Н.
-
_1
F
Δ
7
÷
~
2
Μ
4
5
-
>
Ř
2
÷
5
S

CELL														
END		5 5 5	8	125	155	182	206	228	249	269	288	307	325	342
R &		-	56	89	126	156	183	207	229	250	270	289	308	326
STAF		50	0	39	27	6,	00	-	32	32	8	2	-	5
ENDP		476.18	926.05	1570.83	2202.32	2848.47	\$480.65	104.77	736.88	370.05	9998.35	649.71	288.61	875.90
STARTP		0.0	476.185	926.090	1570.839	2202.327	2848.479	3480.690	4104.771	47.36.882	5370.082	5998.358	6649.712	7288.611
SPACE		11.362	14.962	18.813	21.794	24.241	26.241	27.940	29.448	30.787	31.979	33.100	34.101	0.0
DRIFT		۰-		•	۴-	-	-	-	•	۰-	۰-	-	۰-	0
PT0T		0.679	0.642	0.910	0.961	0.981	0.961	0.951	0.963	0.962	0.951	0.990	0.970	0.942
PBEAM		0.197	0.195	0.278	0.270	0.262	0.243	0.230	0.223	0.215	0.205	0.206	0.196	0.185
PC*1.3		0.483	0.447	0.632	0.691	0.719	0.717	0.721	0.740	0.747	0.746	0.784	0.775	0.758
TANK		464.823	434.943	625.937	609.694	621.910	605.970	596.141	602.664	602.412	596.297	618.254	604.798	587.290
CELL		5 S	м М	37	30	27	24	22	21	20	19	19	18	17
BETA	0.0798	0.1637	0.2156	0.2711	0.3141	0.3493	0.3781	0.4026	0.4243	0.4436	0.4608	0.4770	0.4914	0.5043
ENERGY	3.000	12.835	22.600	36.503	50.001	63.080	75.253	86.750	97.921	108.670	118.938	129.254	139.038	148.267
	ENERGY	ENERGY 3.000	ENERGY 3.000 12.835	ENERGY 3.000 12.835 22.600	ENERGY 3.000 12.835 22.600 36.503	ENERGY 3.000 12.835 22.600 50.001 50.001	ENERGY 3.000 2.2.600 50.001 63.080 63.080	ENERGY 3.000 22.6000 50.000 55.000 75.253	ENERGY EN	R R R R R R R R R R R R R R R R R R R	ENERGY ERG ERG ERG ERG ERG ERG ENG ERG ERG ERG ERG ERG ERG ERG ERG ERG ER	ENERGY CONSTRUCT NO CONSTRUCTION CONSTRUCTICON CONST	ENERGY EN	R R R R R R R R R R R R R R R R R R R

— 83 —

		6/L		0.237374	0.24011	0.24287	0.24425	0.24564	0.24/03	0.24978	0.25115	222227 O	0.25526	0.25663	0.25939	0.26078	0.26216	0.26354	0.26630	0.26766	0.26902	0.27173	0.27308	0.27444	0.27581	0.27856	0.27993	0.28131	0.28399	0.28532	0.28666	0.28934	0.29069	0.29338	0.29473	0.29605	0.29869	0.30000	0.30131	0.30262	0.30524	0.30654	0.30916	0.31047
		DTL2 LENGTH		2.14635	2.21814	2.28971	2.32540	2.36103	2.43211	2.46757	2.50292	2.57330	2.60832	2.64323	2.71264	2.74713	2.78147	2.81567	2.88366	2.91750	2.95117	3.01800	3.05116	3.08414	5.11692 3.11692	3.18203	3.21437	3.24656	3.31074	3.34259	3.37428	3.43708	3.46817	3.52981	3.56037	3.59083	3.65116	3.68104	3.71073	5.74023 v	3.79865	3.82758 (3.85630 (3.88485 (3.91324
		DTL1 Length		2.14793	2.18378	2.25530	2.29097	2.32658	2.39764	2.43313	2.46851	2.53894	2.57400	2.60894	2.67845	2.71300	2.74740	2.81579	2.84978	2.88372.	2.91/49	2.98452	3.01778	3.05086	3.11639	3.14893	3.18134	5.21360 3.74584	3.27795	3.30989	5.54167 3.37328	3.40467	3.43586	3.49772	3.52839	3.55898	3.61958	3.64959	3.67940	3.73847	3.76771	3.79677 3.82558	3.85424	3.88273
		D02		1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000
		D@1		1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000	1.25000
		GAP Length	1 325/2	1.35800	1.59094	1.45792	1.49198	1.5640	1.59630	1.63163	1.66729	1.73960	1.77625	1.81325	1.88821	1.92617	1.96443	2.04187	2.08103	2.12029	2.19958	2.23962	2.27992	2.32052	2.40286	2.44447	2.48638	2.57078	2.61320	2.65589	2.74202	2.78558	2.82942	2.91780	2.96234	3.00689	3.09658	3.14171	3.18704	3.27828	3.32418	3.37027 3.41668	3.46331	3.51016
		002	0 44805	0.68438	0.71760	0.73448	0.75155	0.78625	0.80385	0.82155	0.83941 0 85745	0.87564	0.89401	0.93123	0.95009	0.96910	1.00759	1.02705	1.04667	1.06632	1.10601	1.12606	1.14623	1.18655	1.20779	1.22862	1.24961	1.29187	1.31310	1.33447	1.37759	1.39939	1.42155	1.46556	1.48785	1.53253	1.55501	1.57760	1.60028	1.64592	1.66889	1.69195	1.73850	1.76195
		001	0 45737	0.67361	0.70665	0.72344	0.74042	0.77495	0.79245	0.81008	18778.0	0.86395	0.88224	0.91932	0.93812	0.95706	0.9/616	1.01482	1.03437	1.05397	1.09357	1.11356	1.13369	1.17444	1.19507	1.21584	1.23677	1.27891	1.30010	1.32141	1.36443	1.38619	1.40807	1.45224	1.47449	1.51911	1.54156	1.56412	1.58677 1 40051	1.63236	1.65529	1.70151	1.72480	1.74821
		TOTAL Length	5838	11.2720	22.9626	28.9656	35.0739	47.6078	54.0339	60.5662	73.9502	80.8020	87.7606	101.9983	109.2776	116.6639	121.7575	139.4649	147.2794	155.2009	171.3647	179.6069	187.9557	204.9734	213.6422	222.4176	251.2997 240 2884	249.3838	258.5857	267.8940 277 3088	286.8299	296.4572	316.0301	325.9755	336.0266	356.4454	366.8127	377.2850	581.8622 798 5440	409.3303	420.2209	421.2125	453.5164	464.8226
		CELL LENGTH	5.58380	5.68821	5.89777	6.00293	6.10834 6 21601	6.31992	6.42605	6.53233	6.74522	6.85184	6.95856 7 04560	7.17233	7.27930	7.38629	7.60034	7.70740	7.81448	6.02846	8.13534	8.24214	8.34886	8.56215	8.66879	8.77544	8.98873 8.98873	9.09535	9.20189	9.41477	9.52110	9.62733	9.83945	9.94534	10.05110	10.26210	10.36732	10.47234	10.68182	10.78628	10.89054	11.09855	04202.11	11.30613
1		XR	2.81440	2.86666	2.97155	3.02419	5.0/695 7 17984	3.18285	3.23596	3.28912	3.39561	3.44894	5.50255	3.60924	3.66273	5.71625	3.82326	3.87679	3.93033	5.98582	4.09068	4.14406	4.19739	4.30401	4.35733	4.41066	4.51730	4.57059	4.62384	4.01/06	4.78339	4.83647	4.94247	4.99537	5.04822	5.15362	5.20618	5.25864	5.36328	5.41545	5.46753	5.57146	0000000	5.67520
サイト	UMBER= 1	xL	2.76940	2.82155	2.92622	2.97874	5.05159 3.08417	3.13707	3.19010	3.24321	3.34961	3.40290	3.50964	3.56308	3.61657	5.6/UU6 777557	3.77708	3.83061	3.88415	3.99119	4.04466	4.09808	4.15147	4.25814	4.31146	4.36478	4.47143	4.52475	4.57805	4.63130	4.73771	4.79086	4.89699	4.94996	5 05573	5.10848	5.16114	5.21370	5.31855	5.37082	5.42301	5.52709	406JC.C	5.63094
1001	IL TANK N	ITIC BETA Rgy	0.0798 6 0.0813	7 0.0828	3 0.0858	9 0.0873	7 0.0904	9 0.0919	7 0.0934	9 0.0950 5 0 0955	6 0.0980	2 0.0996	8 0.1076	7 0.1042	1 0.1057	0 10/5	4 0.1103	2 0.1119	5 0.1134	7 0.1165	7 0.1181	0 0.1196	4 0.1211	2 0.1242	7 0.1257	6 0.1273	0.1304	0.1319	0.1334	0.1365	0.1380	0.1396	0.1426	0.1441	0.1472	0.1487	0.1502	0.1517	0.1547	0.1562	0.1577	0.1607	0.1022	0.1637
1 2 :	TL DETA	L KINE Er Ene	3.000	3.231	3.473	3.597	3.854	3.986	4.121	8 C Z - 4	4.540	4.685	4.981	5.133	5.288	4 4 4 7 4 4 7 4 4	5.765	5.929	6.095	6.434	6.607	6.783	7 1 4 0 0	7.322	7.5067	7 98936	8.074	8.2684	8.4646	8.8638	9.0667	9.2719	9.6887	5006.6	10.3299	10.5477	10.7675	10.9892	11.4386	11.6662	11.8958 12 1272	12.3610	0066.21	12.8347
0 第	٥	CELNUMB	N L	01 M	4	5	• •	80	ъ (2	12	м. Т	+ m	16			20	21	2 2	5 7 7	. 25	9 F 7 0 7 0	280	56	0 E	5	3 5	34	35	370	38	59 40	41	45	6 0 6 4	45	4	4 7	- 6 - 7	20	5	1 M 4	t n	55

表 1 0

— 84 —

表11 150 MeV DTL のパラメーター

周波数	432	MHz
入射エネルギー	3	MeV
出力エネルギー	148	MeV
加速電場	3	MV/m
安定位相	-30, -20	6 degree
タンク長さ	75.7	m
全長	78.8	m
タンク直径	44 - 42	cm
D/T 直径	8 - 7	cm
ビーム孔半径	0.5	cm
セル数	342	
タンク数	13	
励振電力	9.0	MW
ビーム電力	2.9	MW
全電力	11.9	MW
クライストロン数	13	
クライストロン電力	1.0	MW
横方向位相進み	55 - 70	degree
規格化アクセプタンス(90 %)	8.9	π mm • mrad
規格化アクセプタンス(100 %)	10.0	π mm • mrad
最大入射エネルギー幅	0.15	MeV (90 % 半幅)
最大出力エネルギー幅	0.72	MeV (90 % 半幅)
最大入射位相幅	88	degree
最大出力位相幅	12	degree

3 開発の現況

3.1 概要

432 MHz の DTL では開発中の課題が四つある。第1はタンクデザインの開発、 第2は4極永久磁石の開発、第3は磁石のドリフトチューブへの封じ方の開発、 第4はステムの取り付け方を中心とした製作法の開発である。この中で第1と4 項は、3.4 節のモデルタンクの製作を通じて開発を行い、第2と3項については、 各々の基本的な技術の開発が進んでいる。

KEK で運転している 40 MeV 陽子リニアックでは、しばしばドリフトチュー ブの交換を行っているが、その原因は、殆どが電磁石の耐圧不足か漏電であり、 まれにドリフトチューブの冷却水のリークであり、真空漏れである。従って、永 久磁石を組み込むドリフトチューブを考えると、その交換頻度は大きく減少する と予想される。しかし、新たに生じる問題は、磁石の劣化であり、その対策に力 を入れる事が肝要である。

3.2 4 極永久磁石

3.2.a 4 極永久磁石の試作と測定

試作磁石の大きさ

ドリフトチューブのサイズ(内径=10 ¢、外径=80 ¢)の要求を満たすべ く、磁石のサイズを計算してみる。ボーア半径を決めるために、磁場有効な領域 をボーア半径の70-75%とする。またビームロスによる発熱が直接磁石に来 なくするため、1.5-2.0mmの厚さの鉄か銅が必要であり(これはビーム のエネルギーに関係するが、40MeVまで、上の厚さで充分である。)、熱が 直接磁石に伝導しないため、隙間(真空が望ましい、ふく射熱はさけられない) も必要である。即ち 熱は、ドリフトチューブの冷却部を通るようにする。 外 径については、メッキ層(0.5mm),SUS層(2-3mm),冷却水路の 層(3-4mm),SUS層(2-3mm)と外側から決めていく。磁石の外径 は、最大65mmとなり、最小59mmとなる。上記の制限により、磁石の組立 に使用できる範囲を、ボーア半径7.0mmとして、内側12~13¢、 外側 60¢とした。

磁石の型

四極磁石には色々の型があるが、現在 Halbachの論文に詳細に書かれ ている。磁石に使用出来る領域が狭いため、永久磁石と電磁石と混合は、考えな かった。強い磁場勾配を得るために、16セグメントの型を選んだ。 図23 に試作磁石の寸法を示す。

磁石の材料

永久磁石の材料としては、サマリュウム-コバルト(SmCo)系とネオジウム-鉄(Nd-Fe)系とが考えられる。後者は、キュリー点が低く、放射線に

図23 試作磁石の寸法

も弱い(たぶん 熱によると思われる)。試作品は、両方の材料で作ることにした。熱による効果を調べるためであるが、この調査はまだ行っていない。

試作磁石の磁場勾配等

Halbachの論文の式(文献6)に従い、磁石の表面での磁場強度は、下記で与えられる。

 $B_{at} = B_{r} \times K_{2} \times 2 \times (1 - r_{1} / r_{2})$

但し K₂=0.937

B_r;残留磁場

r₁、**r**₂; 磁石の大きさ

ところが全磁束が保存されるから、 $\Phi = B \times L \times r_1 / 2$ (但し L;磁石の長さ) が保存される。

試作品では

 $B_r = 9$. $3 \sim 9$. 6 k G ; S m C o

 $B_r = 1 \ 1$. $7 \sim 1 \ 2$. $1 \ k \ G$; $N \ d - F \ e$

L = 20.0mm, r_1 =7.0mm, r_2 =22.5mm であり、全磁束は、

 $\Phi = 8 4 1 \sim 8 6 8 k G \cdot m m^2$; S m C o

 $\Phi = 1 \ 0 \ 5 \ 7 \sim 1 \ 0 \ 9 \ 4 \ k \ G \ m \ m^2$; N d - F e

となる。磁場勾配(G;T/m)は、

 $G = 1 7 2 \sim 1 7 7 T / m$; S m C o

 $G = 2 \ 1 \ 6 \sim 2 \ 2 \ 3 \quad T \ m ; N \ d - F \ e$

である。

試作磁石の磁場測定

磁場測定は、サーチコイルとホール素子で行われた。サーチコイルの測定結果 は、積分(長さ方向について)されたものであり、ホール素子の結果は、磁石の 中央付近の磁場である。結果を表12 に示す。

表12 試作磁石の測定結果

ネオ	ジウム-鉄	サマリコ	ウムーコバルト
∫Gdz	4.40T	∫Gdz	3. 25 T
有効長	22.2mm	有効長	22.0mm
G	198T/m	G	148T/m
Φ	1078kG•mm ²	Φ	796kG•mm ²

	B_1/B_2	B_{3}/B_{2}	B_4/B_2	B ₁ /B ₂	B ₃ /B ₂	B_4/B_2
積分値	1.4%	0.27%	3.9%	1.3%	0.72%	3.7%
中央付近	1.6%	0.3 %	1.0%	1.2%	1.8 %	1.9%

 B_i ; ボーア半径上の磁場の強さの i - t h 成分を意味する。

表 からわかるように、ネオジウム-鉄の磁石は、計算に近い磁束が得られて いるが、サマリュウム-コバルトの方は、計算値より小さくなっている。 Brが低 くなっていると思われる。また Q-成分以外の成分が多い。これは、磁石の組 立精度 並びに 永久磁石の強さ等のバラツキによると思われる。今後の問題と して いかに精度よく組み込むか また 永久磁石の強さ,磁束密度の方向をい かに管理するか等が残されている。その他 ドリフトチューブへの据え付け方法 精度等も考えねばならない。

3.2.b 永久磁石の放出ガス試験

ドリフトチューブの真空シールをしない場合を考えて、永久磁石(PQM)の放 出ガスを測定した。PQM の試料は、3.2.a にて試作した4極磁石と同じロットか らとり、SmCo (商品名 CORMAX-2300)の重さ 45 g,表面積 A_M=29.8 cm² を使用 した。この真空排気実験装置では、試料室(SUS304,表面積 A₀= 175 cm²)と排 気チェンバーの間には、コンダクタンスが 1 L/s のオリフィスがあり、排気速度 を決めている。 1. 試料室の放出ガス

試料室の放出ガス測定の結果を表13に示す。

表13 試料室の放出ガス測定

排気時間	240	720	Hours
到達圧力	2.7	1.5	x10 ⁻⁸ Torr
放出ガスQg	2.7	1.5	x10 ⁻⁸ Torr L/S
q e =Qe/Ae	15.4	8.57	x10 ⁻¹¹ Torr L/S cm ²

2. 第1回測定

試料室に PQM を入れて測定した結果を表14に示す。

表14 第1回 PQM の放出ガス測定

排気時間	260	384	Hours
到達圧力	15	6.5	x10 ⁻⁸ Torr
放出ガス Qm	12.3	5.0	x10 ⁻⁸ Torr L/S
qm=Qm/Am	412	167	x10 ⁻¹¹ Torr L/S cm ²
qm/qø	27	20	

ここで、Qn は全放出ガスから Qa を引いた値である。

3. 第2回測定

乾燥窒素を用いて、短時間大気圧に戻した後、再び測定した結果を表15 に示す。

表 1 5	第	2 回	PQM の	放出ガス	測定	
排気時間		48	260	384	456	Hours
到達圧力		16	7	5.2	5.2	x10 ⁻⁸ Torr
放出ガス	Qm	11	4.3	3.7	3.7	x10 ⁻⁸ Torr L/S
q _M =Q _M /A _M		369	144	124	124	x10 ⁻¹¹ Torr L/S cm ²
QM/Q0			9.4	14	14	

この結果を第1タンクにあてはめてみよう。銅の排気後 50 時間のガス放出量を 7x10⁻¹¹Torr・L/s cm² と仮定すると、銅の表面積は 81000 cm²、磁石表面積は 14000 cm² だから、 $Q_P/Q_0 = 47$ となる。従って、永久磁石の真空特性を今後の課題として、研究する必要がある。

3.3 ドリフトチューブの接合法

4 極磁石をドリフトチューブの中へ封じ込める方法には、従来電子ビーム溶 接(EBW)を用いて来た。周波数が上がって、永久磁石を用いるようになった結果、 今までと同じ形で EBW を応用する事は難しくなった。反面、磁石をタンク内の真 空にさらす可能性が生まれてきた。

3.3.a 電鋳法

電鋳法はリニアックに昔から応用されてきた(文献16)。従って電鋳そ のものは技術的に確立されていると言えよう。今回の応用にあたっては、強力な 磁界の影響を受けるかどうか、10々という小さな口径のパイプを接合できるかの 2点がチェックポイントになる。まず、通常の硫酸銅鍍金法により、ドリフトチ ューブの中の4極永久磁石の影響を調べた。この結果、母材が SUS316L と無酸素 銅の場合に、鍍金厚さ300μmまでは、鍍金厚さ、鍍金の密着性、表面の光沢には 磁石の影響は見られない事がわかった。しかし、ドリフトチューブの端面には、 極めて小さな突起物が見られた。この突起は、注意深く観察すると、僅かな4回 対称性を有していることが認められた。この原因は今の所わかっていないが、ド リフトチューブとしての実用に支障は無いと考えられる。次にドリフトチューブ とほぼ同じ形の試料を使って、外側と内側の接合テストを行った(図24参照)。 治具等の不具合の為の表面の乱れはみられるが、基本的には接合が出来る事がわ かった。

3.3.b EB₩ 法

この方法は従来の 200 MHz のドリフトチューブに用いられており、経験は豊富であり、接合の信頼性も確立されている。永久磁石を封じこめる場合、特にビーム孔付近では、漏れ磁束が大きく、何等かの対策をしない限りビームが曲がってしまい、良い溶接は出来ない。現在、磁気シールドを施して、溶接の実験中である。

3.3.c レーザー法

レーザーによる銅とステンレスの溶接はまだ技術的に確立されていないの で、まずドリフトチューブの外形パイプの溶接のための基礎テストを行った。図 25にその結果を示してある。溶接ビードのでき具合いから、実用的には更に検

図24 電鋳による接合テスト

図25 レーザーによるドリフトチューブ外側の基礎テスト

図26 レーザーによるドリフトチューブ内側相当部の溶接の断面写真

討を要するが可能であると思われる。ドリフトチューブの内径付近の為のテスト 結果を図26に示す。ここでは、基本的な接合には成功しているが、小さな孔が 多く認められた。また溶接条件、特にアシストガスの流し方等に接合の具合いが 大きく依存する事が認められた。従って、実用までに解決すべき問題は多い。

EBW 法とレーザー法は発熱を伴うので、溶接の時の熱シールドの問題が残っている。100 ℃以上になると、たとえサマリウムコバルト系の磁石でも劣化が起こるといわれており、テストが必要である。

3.3.d 真空シールをしない方法

封じ込めをしないで、真空にさらす方法が考えられる。この場合、3.2.b の放出ガスが一つの問題点である。次に、ビームがドリフトチューブの中を通過 するときの誘起電流が問題とならないようにしなけらばいけない。最後に、200 MHz のドリフトチューブでは、冷却水は二重に真空シールされていたので、冷却 水路から漏れを生じても、空洞の中には拡散しなかった。シールが一重になると きは、シールの管理を更に厳しくする必要がある。

3.4 モデルタンクの製作

モデルタンクの製作と測定による開発研究を予定している。第1は、入射部 のコールドモデルの製作である。この空洞の第1の目的は、タンクのメカニカル デザインのテストである。第2の目的は、空洞設計法(2.1節)の検証とポスト カップラーの研究である(2.4節)。432 MHz タンクでは、ドリフトチューブの アラインメントの仕方を新しい方法にする必要がある。これは人が空洞に入れな くなったこと、ドリフトチューブの数が多い事、交換の頻度が減ると予測される 事を考慮して開発を進めている。ポストカップラーに対する理解は 40 MeV 陽子 リニアックの建設で得られているが、低いエネルギー領域で、βが大きく変わる 時の振舞いを研究する必要があると考える。

コールドモデルで開発された技術要素は、高電力モデルで試験をしてから実 際に使用可能となる。セル数の少ない高電力モデルをつくって、空洞を構成する 各パーツの耐電圧テストや、耐電力テストを行う予定である。

参考文献

1. I. M. Kapchinskiy, "Theory of resonance linear accelerators", 1985.

T. P. Wangler, "Space-charge limits in linear accelerators", LA-8388 (1980).

- 2. 加藤隆夫、"1 GeV リニアックのビームシミュレーション"、大型ハドロン計画の加速器、JHP-6. p.55(1987).
- 3. H. Baba et al., "Model cavity studies for tank design and on tank fabrication", 1968 Proton Linear Accelerator Conf., 543(1968).
- 4. S. Okumura, "On methods for calculating the field distribution in a proton linac cavity", 1976 Proton Linear Accelerator Conf., 394(1976).
- 5. E. W. Blackmore, "Radiation effects of protons on samarium-cobalt permanent magnets", IEEE Trans. on Nucl. Sci. NS-32, 3669(1985).
- 6. K. Halbach, "Design of permanent multipole magnets with oriented rare earth cobalt material", Nucl. Instr. and Method 169, 1(1980).
- K. Batchelor et al., "The dependence of transverse emittance growth of the quadrupole focussing strength in the Brookhaven 200 MeV linac", 1972 Proton Linear Accelerator Conf., 47(1972).
- 8. T. P. Wangler, "Developments in the physics of high current linear ion accelerators", in New Techniques for Future Accelerators, 181(1986).
 T. P. Wangler, F. W. Guy and I. Hofmann, "The influence of equipartitioning on the emittance of intense charged-particle beams", 1986 Linear Accelerator Conf., 340(1986).
- 9. R. A. Jameson, "Equipartitioning in linear accelerators", 1981 Linear Accelerator Conf., 125(1981).
- K. Mittag, "On parameter optimization for a linear accelerator", Kernforschungzentrum, Karlsruhe report KfK 2555(1978).
- J. Tanaka et al., "Synchronous phase law experiment in the KEK linac", KEK-77-3(1977).
- 12. D. A. Swenson et al., "Stabilization of the drift tube linac by operation in the $\pi/2$ cavity mode", Proc. 6-th International conf. on high enrgy accelerators, CEAL-2000, 167(1967).
- 13. E. Boltezar et al., "The new CERN 50 MeV linac", 1979 Linear Accelerator Conf., 66(1979).
- 14. T. Kato," Design and rf tuning of the KEK 40 MeV proton linear accelerator", KEK Report 86-5(1986).
- 15. T. Nishikawa, "A note on the dispersion relation of the Los Alamos structure for the drift tube linac", 1967, unpublished.
- 16. J. Tanaka, T. Nishikawa and H. Baba, "Electroplating of proton linear accelarator tanks", Particle accelerators, <u>2</u>,234(1971)

- 94 -