第 7 章 高 β 加速洞のビームダイナミクス

第7章 高β加速空洞のビームダイナミックス

- $1 \pi/2$ モード加速管の為の計算コード
- 2 定速度型加速管と可変速度型加速管の比較
- 3 加速電場
- 4 収束系
- 5 入射部分の問題
- 6 髙周波発散力
- 7 ピームシミュレーション
- 8 まとめ

$1 \pi/2$ モード加速管の為の計算コード

ドリフトチューブリニアック(DTL)で広く使われている加速管の計算コードであるPARMILAは、2πモード加速の為の計算コードであり、安定粒子の速度にあわせてセルの長さを決めるという意味で可変速度加速管を作りだす。この場合には、いわゆる安定粒子は、高周波周期でセルを通過する事になり、文字どうりの安定粒子が存在する。このタイプでは、セル毎にシャントインピーダンスを最適化出来る長所があるが、そのために、セル毎の長さが異なる。一方、作り方が簡単になるので、一つのタンクの中のセルの長さを一定に保つ設計法がありうる。これを定速度型加速管となずける。この場合には、タンクの中で加速される粒子は、セルの長さに対応する周期とは異なる通過時間でセルを通過するので、加速位相がセル毎に異なる事になる。可変速度加速管でも、加速位相を変化させる設計法はある。この場合加速ゲインは

$\Delta W = eE_{\theta}TL\cos\phi$

で与えられ、 ϕ と L が変化する。定速度型では、 ϕ が変化して、しかも L が一定のままであるので、特に低エネルギー領域で加速による速度の変化が大きいところで著しく加速効率を下げる事になる。その様子を図1に示す。 電場が 3.6 MV/m,入射エネルギーが 150 MeV と 400 MeV の場合について、可変速度型加速管との比で効率を定義している。これは、第5節で述べるようにショートタンクを入射部で使用する一つの理由となっている。ビームのどのエネルギーに対応するセルの長さを、基準セルとして採用するかは、選択の余地があるが、ここでは、ビームの入射エネルギーに相当する長さを基準に選ぶ。従って入射速度を $c\beta$ inとすれば、 $\pi/2$ モードのカップルドキャビティリニアック (CCL) のセルの長さは

$$\beta_0 = (\beta_{in} + \beta_{out})/2$$

 $L = \beta_0 \lambda/2$, $c = f \lambda$

添え字の outはセルの出口を表す。加速されて速度 c β になった粒子は 1 セル進む間に $\pi(\beta_{a}-\beta)/\beta$ の位相のずれを生じ、これは位相振動を除けば加速につれて加算的であるので加速効率をおとす原因となる。

次の問題は、長さ L のセルに、速度が $\Delta\beta$ 異なる粒子が入射した時の加速であるが、これは PARMILA のビームシミュレーション用のサブルーチンに使われている。加速ゲイン $\Delta W=eE_BTLcos\phi$ において、T が次のように変わる。

$$T = T_0 + (dT/d\beta) \Delta \beta$$

 $dT/d\beta$ は SUPERFISH により求められている。 $\Delta\beta$ が大きい場合に、この式で良いかチェックした所、入射部のタンクで 10^{-4} の精度で一致するので、PARMILA の方法を採用する。

以上縦方向の運動の概略について述べた。横方向の収束法は、第4節に述べる3種類をいれ、ビームシミュレーションに必要な加速電場のエラーと結果の表示機能を入れて、計算コードを新たに作った。

2 定速度型加速管と可変速度型加速管の比較

同じ入力パラメーターを使って、150 MeV から 1 GeV まで加速する時の定速度型加速管と可変速度型加速管の比較をしてみる。表1に結果を示し、図2、3に縦方向の位相振動の様子を示す。

表 1 定速度型加速管と可変速度型加速管の比較

	定速度型加速管	可変速度型加速管		
周波数	1200	1200	MHz	
加速電場	4	4	MV/m	
タンク長さ	310.2	297.4	m	
タンク数	152	146		
セル数	3354	3206		
励振電力	86.0	82.2	MW	
φ max	-58.8	-30	degree	

図1 位相滑りによる加速効率の減少。

図2 定速度加速管の縦方向位相振動。

図3 可変速度加速管の縦方向位相振動。

この比較では、定速度型加速管の入射位相は -30° にとってあるので、位相の滑りによって、 φ は タンク内で -60° 近くまで変化する。この結果、縦方向の アクセプタンスは広くなっている。入射位相の絶対値を小さくとれば、位相の滑りを小さい角度までにとどめる事も可能である。定速度型加速管は、つくり安さが圧倒的に簡単になるのに比べて、性能はそれほど落とさずに出来るので、この タイプを選択する。

3 加速電場

第5章1.3節の議論から、電場の強さは 平均3.6 MV/m 以上なければいけ ない。最適な電場は、以下にあげる因子を考慮して決める。第1は DTL のビーム を捕獲できるアクセプタンスを持つ事である。第2は空洞の冷却である。第3は 利用出来るクライストロンの電力と高周波システムである。第4は第6節で述べ る高周波発散力がビームに及ぼす影響である。第5は図1に示した入射部の加速 効率の減少である。第6は加速器全体の経費の最適化である。DTL で問題となる 放電限界は、周波数 1296 MHz では 32 MV/m なので問題とならないほど高い。こ の中で、第2項と第3項については、第6章で詳しい議論がなされている。ここ では およそ 平均 4 MV/m とした。シャントインピーダンスの分布からわかるよ うに、高いエネルギーになれば、ある加速電場を作るのに必要な高周波電力は減 少する。今、横方向の収束の長さをほぼ一定とすれば、加速電場をじょじょに上 げていく事によって、タンク毎の励振電力をほぼ一定に保つ事が出来る。これは、 大電力クライストロンの出力をデバイダーにより分割して給電する形の高周波シ ステムでは重要な問題となる。そこで入射部で 3.6 MV/m として、4.42 MV/m ま で次第に上げるようにする。入射部のアクセプタンスの半幅は 2 MeV となり (第 5章9式)、DTL の出力の最大エネルギー幅は、第5章の表11から 0.72 MeV となるので充分なアクセプタンスの大きさといえる。

4 収束系

CCLでは、空洞の中に収束用の4極磁石を入れられないので、タンクとタンクの間にドリフトスペースを作り、そこに磁石を置く。したがって、タンクの長さが収束の周期とほぼ同じ事になり、一つのタンクの高周波励振電力の大きさと、縦方向のビームダイナミックスがタンク間距離に依存する事になるので、この3者を最適化するように長さを選ばなければいけない。収束系に siglet を使うと、希望するアクセプタンスの大きさを得る為には、収束の周期を小さくしなければいけない。 triplet を使うとその為に必要

な長さが長くなりすぎて、ビームの縦方向のエミッタンスを悪化させる。従って、収束系には doublet を採用する。計算コードでは、以上3種類の収束系を自由に選べるようになっており、利用出来るクライストロン電力が 3 MW として、4つのタンクを同時に励振すると仮定して、ほぼ充分なアクセプタンスが得られる収束系を得た。 代表的な長さを図4に示す。収束系の周期は約 2.6 m であり、ドリフトスペースはおよそ 0.7 m である。計算コードの中では、収束の周期長さと、横方向の位相進みと、磁石の配置を与えると、タンクの配置法を含めてすべての長さが決まる。2種類の収束の方法を行ってみた。第1は位相進みを一定にする方法、第2は磁場勾配を一定に保つ方法である。両者の比較を表2に示し、アクセプタンスとエミッタンスを図5に示す。図6に、磁場勾配一定の場合の y方向のアクセプタンスと対応する加速後のエミッタンスを示す。最適な磁場勾配の変化の方法はまだ検討中であり、磁場勾配一定の方法をここでは選択した。

doublet の場合の一般的な収束の関係式を列挙しておこう。磁石の長さはいずれも同じで L_a とする。磁石と磁石の間の距離を L_1 , L_2 とする。これらは、端面から端面の距離として、 L_2 の中にタンクが入るとする。高周波発散力を第6節の形で取り入れると、

$$\cos \mu = P\cos\theta \cosh\theta + k(Q + R)/2 \cos\theta \sinh\theta$$
$$- k(Q - R)/2 \cosh\theta \sin\theta$$
$$-k^2 \alpha L_1 L_2/2 \sin\theta \sinh\theta$$

 $P = 1 + L_2 \xi (L_1 + L_2)/(2Lc)$

 $Q = L_1 + L_2 + L_2^2 \xi (L_1 + L_2/3) / (2Lc)$

 $R = L_2 \xi / (k^2 Lc)$

 $\alpha = 1 + L_2^2 \xi / (6Lc)$

Lc はセルの長さを表す。

 $k\sin\mu \beta_{max} = P\cosh\theta \sin\theta + [kQ \cosh\theta + k^2\alpha L_1L_2\sinh\theta]\cos^2(\theta/2)$ $+ k(Q + R)/2 *\sinh\theta \sin\theta + kR\cosh\theta \sin^2(\theta/2) + (3\alpha - 2)*\sin\theta$

図 4 代表的な収束系の長さ

図5 μ = 60° (一定) と B' = 23.2 T/m (一定) で得られたアクセプタンスと対応する出口のエミッタンス。

$$\theta = kL_Q$$

$$k^2 = ecB'/m_Qc^2\beta \gamma$$

$$n = L_2/Lc, n >> 1$$

ここで n はセル数を表す。 $L_1=0$ の場合について、高周波発散力がある場合と無い場合の比を求めると、

$$\cos \mu ' = (1 + n^2 \operatorname{Lc} \xi / 6) \cos \mu + (n^2 \operatorname{Lc} \xi / 3) \cos \theta \cosh \theta$$

$$\beta'_{\text{max}} = (1 + n^2 \operatorname{Lc} \xi / 6) (\sin \mu / \sin \mu') \beta_{\text{max}}$$

$$+ (n^2 \operatorname{Lc} \xi / (3k \sin \mu')) \sin \theta (\cosh \theta + 1)$$

ここで、添え字 ' は髙周波発散力がある場合を表す。

表 2 収束法の比較

	位相進み一定	磁場勾配一定	
規格化アクセプタンス	25.9	29.3	π mm • mrad
位相進み	60	67.9 - 25.2	degree
磁場勾配	23.2-50.3	23.2	

5 入射部分の問題

横方向のアクセプタンスは収束系の周期に大きく依存する。そこで入射部分のいくつかのタンクの長さを短くすれば(ショートタンクと呼ぶ)、横方向のアクセプタンスを大きくする事ができる。しかし、縦方向のアクセプタンスは、位相の滑りが小さくなっている為と、ドリフトスペースが増える為に、減少する。加速の効率は位相滑りが小さいだけ向上している。収束の周期長さを 1.65~m に選び、ショートタンクの個数を変えた時のアクセプタンスの変化の様子を図7に示す。高周波系の構造との関連からショートタンクを 16~c に選ぶ。得られた規格化アクセプタンスは $Ax=29\pi mm \cdot mrad$, $Ay=26\pi mm \cdot mrad$ である。この場合の縦方向アクセプタンスと対応する加速後のエミッタンスを図8に示す。

図 6 B'=23.2 T/m (一定) で得られた y-y' アクセプタンスと対応する出口のエミッタンス。

図7 ショートタンクの個数を変えた時のアクセプタンスの変化(相対値)

6 髙周波発散力

高周波発散力はエネルギーの高い場合は小さくなるが、タンクの中で 30 程度のギャップで発散力を受けると、全体としては、ビームダイナミックスに影響を及ぼす。 一つのタンクの中の高周波発散力のトランスファーマトリックスは

$$\begin{pmatrix} 1 & Lc \\ \xi & 1 \end{pmatrix}$$

 $\xi = -e\pi E_0 T \sin \phi / (2m_0 c^2 \beta^2 \gamma^3)$

なお、入射位相を変える時の捕獲効率と加速後のエネルギーの広がりを第5章 図16に示してある。その場合の入射ビームは、 RFQ から得られるビームを仮定 している。

図8 縦方向アクセプタンスと対応する加速後のエミッタンス

図 9 入射位相による横方向アクセプタンスの変化(相対値)

図10 高周波発散力の有無によるアクセプタンスの違い。加速のパラメーターは4 MV/m, ϕ in=-30°, 1.2 m tank, μ = 60°。

図11 高周波発散力の有無によるアクセプタンスの違い。加速のパラメーターは 3.6 MV/m, ϕ in=-30°, μ = 60°, 150 MeV。

7 ビームシミュレーション

横方向の場合について、DTL からのビームをマッチングさせて入射させた様子を図12に示す。予想されるエミッタンスとアクセプタンスの比は、DTL のエミッタンス増加が無いとすれば図に示したように 0.05 程度であるが、DTL の4極磁石のエラーを勘定にいれると、すぐに 0.2 - 0.6 になってしまう。そこで表3に示した3種類の粒子集団を DTL の入口につくって、加速電場のエラーに対してどのような振舞いをするかを調べてみる。

表 3 エミッタンスの異なる三種類のビーム

粒子集団名	PR187	PR188	PR189	
ε x/Ax	0.44	0.32	0.082	•
εy/Ay	0.30	0.21	0.055	

Ax, Ay は CCL アクセプタンス。 ϵx , ϵy はCCL の入口における値。

粒子集団は6次元の広がりを持つ 3000 個からなり、エネルギーと位相の広がりは、RFQ からの出力ビームを想定している(DTL の中のエミッタンスの増加を計算には取り込んでいないので、元の値が少し大きめになっている)。DTL で加速されたビームは、ドリフトスペースと Q-磁石により、横方向は完全にマッチングさせ、縦方向は、DTL と CCL の周波数の 比に従って バンチの長さを長くしたのち、CCL におけるビームロスが最小となるような位相へ入射させる。CCL リニアックでは、次のように加速のパラメーターを変化させる。

- A. 加速電場の 各タンク毎のランダムなバラッキ。例えば、5 % のバラッキとは、設計値を中心として±5 % の範囲で加速電場の大きさを変える。
- B. 加速電場の各セル毎のランダムなバラツキ。
- C. 全タンクの平均加速電場の設計値からのズレ。

CCL におけるシミュレーションの結果は、以下の定義によりまとめる。

loss ratio = 透過粒子数/入射粒子数 loss factor = ΣN; W; /ΣN; Wø

図12 マッチングさせて CCL のアクセプタンス(点線で示す)へ入射させた DTL で加速されたビーム

 N_i と W_i は i番目のセルでロスした粒子数とエネルギー、 W_0 は入射エネルギーを表す。 loss factorは、ロスの大きさとは無関係である事に注意する。エネルギーの幅は 90 % の全幅で表す。横方向のエミッタンスの増加は 90 % 規格化エミッタンスの CCL 出口と 入口での比で表す。縦方向のエミッタンスの増加は 90 % エミッタンスの比で表す。

DTL入口では、ビームの広がり $\Delta \phi = \pm 30^\circ$,エネルギーの広がり $\Delta W = \pm 60 \, \text{keV}$ をビームに与える。横方向のエミッタンスの twiss parameterは DTL アクセプタンスのそれと一致させる。エミッタンスの異なる三種類のビームについて、CCLの加速条件を変えてシミュレーションを行った。表4 にシミュレーションの結果を示す。ここで加速電場のエラー(5,2)の意味は、セル毎のランダムエラーが $\pm 5\%$ であり、タンク毎のランダムエラーが $\pm 2\%$ である事を示す。

粒子集団が PR187 の場合の loss ratio とタンク毎の加速電場エラーとの 関係を 図13 に示してある。1%のロスピームが、現在の KEK のリニアックビ ームの半分程度に相当する。

セルエラー 5%、タンクエラー 2%の場合に、CCL リニアック全体の加速電場の強さと loss ratio、loss factor との関係を 図14、図15 に示す。ビーム損失の少ない加速電場の範囲が少しあるが、設計値よりも低い加速電場の場合には、次第にエネルギーの高い所でのビームロスが増える事が図15からわかる。

このように、PR187 のエミッタンスでは、無視出来ないビームロスが予想されるので、PR188 のエミッタンス以下になるように、DTL におけるエミッタンスの増加を抑える必要があろう。

以上述べたランダムなエラーは性質のよいエラーと言える。これに対して、例えば、タンクのセッティングを 0.2 mm 程度、位相幅になおして 0.6° 位、最初から 90 番目のタンクまでを一方向にずらすような、加算的なエラーを考えてみよう。この場合の縦方向のアクセプタンスと対応する加速後のエミッタンスを図16に示す。縦方向のアクセプタンスは、その中心部で加速出来なくなるような変形を受け、その大きさは約 52 % 減少している。これから僅かな位相のエラーでも加算されると影響が大きい事がわかる。

この類のエラーは、加速管の製作法により全てのタンクの長さがわずかずつ短くなってしまうとか、セッティング方法で系統的に誤差を生じるとか、あるいは、カップルドキャビティリニアックの特性により、給電場所から電場の振幅と位相に勾配を生じるとか、高周波システムの系統的な誤差等を原因として考える事が出来る。いくつかのエラーの組合せに対するシミュレーションが現在進行中である。

表4 CCL のビームシミュレーションの結果

PR187	加速電場	易のエラー	(セル,	タンク)	(%)
	(0,0)	(0,2)	(0,5)	(5, 2)	(5,10)
ΔW (MeV)	2.22	2.40	2.22	2.10	18.9
loss ratio (%)	0.53	1.67	6.67	1.27	18.37
loss factor	1.33	1.25	1.21	1.27	1.25
ε x, out $/$ ε x, in	1.23	1.26	1.36	1.24	4.84
ε y, out $/$ ε y, in	1.05	1.06	1.14	1.05	3.95
ε l, out / ε l, in					
PR188	加速電場	易のエラー	(セル,	タンク)	(%)
	(0,0)	(0,2)	(0,5)	(5, 2)	(5,10)
A W				4 00	15.50
ΔW (MeV)					
loss ratio (%)					
loss factor					
ε x, out $/$ ε x, in					
εy, out / εy, in	1.14	1.14	1.15	1.13	4.65
ε l, out / ε l, in				•	
PR189	加速電場	易のエラー	(セル,	タンク)	(%)
	(0,0)	(0,2)	(0,5)	(5, 2)	(5, 10)
ΔW (MeV)	2.58	2.64	1.38	2.34	17. 22
loss ratio (%)					
loss factor					
ε x, out $/ \varepsilon$ x, in					
ε x, out $/ \varepsilon$ x, in ε y, out $/ \varepsilon$ y, in					
εy, out/εy, in	1.44	1. 33	1.40	1. 90	0.04

ε 1, out / ε 1, in 2.52 2.73 8.12 3.18 /

図 1 3 loss ratio と加速タンクのランダムエラーの関係 (粒子集団 PR187)

図14 loss ratio とタンクレベルの関係 (粒子集団 PR187)

図 1 5 loss factor とタンクレベルの関係 (粒子集団 PR187)

図16 タンクの位置が 0.2 mm ずれている時 (タンク番号 1 - 90) の 縦方向アクセプタンスと加速後のエミッタンス。

8 まとめ

新しい計算コード により計算した高 β 空洞の結果を表5に示す。表の中では、以下の諸量を表している。

NTK タンク番号

N1, N2 セルの通し番号

NC タンク内のセル数

WIN 入射エネルギー

CLENG セル長さ TANKLENG タンク長さ

RF 励振電力 ZS シャントインピーダンス

WGAIN 加速ゲイン

PHI1 入射位相 PHI2 出口での位相

EZERO 加速電場

PBEAM ビーム電力 SUMPOWER 全電力

高β空洞の主要なパラメーターを表6に示す。

一の計算結果 の主要なパラメ CCL

	UMPOWER	4444 4444	4444 4444	4444 4444	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		.639 .640 .641	2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	6655 6655 6655	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	.671 .671 .672 .672
	BEAM S	.052 0	0054	0055	0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0960.	0097	1005	0.124 0.124 0.124 0.124	0.124 0.124 0.125 0.125	0.125 0.125 0.125 0.125 0.125
	ZERO P MV/m	3.600 0	3.600	3.600	3.600	3.642 3.642 3.642 0	3.713 3.713 0.713 0.713	3.777 0 3.777 0 3.777 0	7.4.4.4.4.4.4.4.4.0.00	4.4.4 4.4.15 6.4.15 6.6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
:	PHI2 E7	40.85 40.71 40.56 40.42	140.28 140.15 140.01	-39.75 -39.62 -39.50	-39.25 -39.13 -39.02 -38.90	156.92 156.92 156.33	-52.79 -52.34 -51.91	151.40 150.98 150.57	131.86 131.86 131.82 131.82	-31.78 -31.76 -31.74	
	PHI1 deg	00000	00.000		00.000		00.000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000 0000 0000 0000 0000 0000 0000 0000 0000	00000
	WGAIN Mev	2.6055 2.6258 2.6461 2.6662	2.6863 2.7062 2.7260 2.7456	2.7652 2.7846 2.8039 2.8231	2.8422 2.8611 2.8796 2.8977	4.7933 4.8528 4.9118 4.9702	4.8708 4.9228 4.9741 5.0250	5.1541 5.2054 5.2558 5.3056	6.1800 6.1871 6.1941 6.2011	6.2145 6.2213 6.2281 6.2348	6.2477 6.2543 6.2609 6.2673
÷	ZS MOHM/m	52.371 52.810 53.247 53.680	54.111 54.540 54.965 55.388	55.807 56.224 56.638 57.050	57.459 57.864 58.247 58.608	58.967 59.549 60.127 60.698	61.264 61.807 62.344 62.876	63.402 63.913 64.397 64.876	86.439 86.486 86.531	86.621 86.666 86.710 86.754	86.797 86.840 86.879 86.916
	RF MW×1.20	00.3 31112 0.331111	0.310 0.310 0.309	00.300 00.300 00.300 00.300 00.300	0.307 0.307 0.307 0.307	0.557 0.557 0.557	0.542 0.542 0.541 0.541	0.560	0.541 0.542 0.542 0.542	0.544 0.544 0.544	0.546 0.546 0.546 0.546
,	ANKLENG cm	105.0138 105.7466 106.4747 107.1982	107.9171 108.6314 109.3409 110.0459	110.7462 111.4418 112.1328 112.8191	113.5007 114.1777 114.8501	206.5435 208.4586 210.3555 212.2341	200.7137 202.3864 204.0419 205.6802	207.3016 208.9297 210.5400 212.1322	200.4758 200.6930 200.9080 201.1209	201.3318 201.5409 201.7479 201.9530	202.1561 202.3574 202.5568 202.7543
·算結果 sumed	CLENG T	5.8341 5.8748 5.9153 5.9555	5.9954 6.0351 6.0745 6.1137	6.1526 6.1912 6.2296 6.2677	6.3056 6.3432 6.3806 6.4176	6.4545 6.5143 6.5736 6.6323	6.6905 6.7462 6.8014 6.8560	6.9101 6.9643 7.0180 7.0711	10.0238 10.0346 10.0454 10.0560	10.0666 10.0770 10.0874 10.0976	10.1078 10.1179 10.1278 10.1377
ターの計 0 A IS ASS	BETAIN	0.5043 0.5078 0.5113 0.5148	0.5183 0.5217 0.5251 0.5285	0.5319 0.5352 0.5385 0.5418	0.5451 0.5483 0.5516 0.5548	0.5580 0.5631 0.5683 0.5733	0.5784 0.5832 0.5880	0.5974 0.6021 0.6067 0.6113	0.8666 0.8676 0.8685 0.8685	0.8703 0.8712 0.8721 0.8730	0.8739 0.8748 0.8756 0.8756
1 × 1 × - 1 = 0.02	Z N N N N N N N N N N N N N N N N N N N	148.300 150.905 153.531	158.844 161.530 164.236 166.962	169.708 172.473 175.257 178.061	180.884 183.727 186.588 189.467	192.365 197.158 202.011 206.923	211.893 216.764 221.687 226.661	231.686 236.840 242.045 247.301	942.245 948.425 954.612 960.807	967.008 973.222 979.443 985.672	991.906 998.154 1004.409 1010.669
要な、 CURREN	S S	8888	2 C C C C	+ + + + & & & & &	£ £ £ £	2222	0000	0000	2000	7 7 7 7 7 7 7 7	0000
の EAM CI	N 2	7 2 4 8 2 4 6 3 7 6	90 108 126 144	162 180 198 216	234 252 270 288	332 332 416 416	446 476 506 536	5 6 6 5 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	3334 3334 3334 3334 3334 3334 3334 333	3448 3448 3468 3468	335 335 356 356 356 356 356 356 356 356
700	X L	1 1 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	73 109 127	145 163 199	217 235 253 271	3324 3324 3334 3354 3534	417 447 477 507	537 567 597 627	器 3329 3349 3369 3389	2444	4 20 20 20
表5 (+++	NTK	- W M 4	∞ √ v v	9111	1113 15	17 18 19 20	2222 1222	22 22 24 84 84	会 中 か た 252 153 153 153 153 153 153 153 153 153 153	4444	

表 6 1 GeV CCL のパラメーター

周波数	1296	MHz
入射エネルギー	148	MeV
出力エネルギー	1017	MeV
加速電場	3.6 ~ 4.4	MV/m
安定位相	-30 ∼ -57	
タンク長さ	303.0	m
全長	410.9	m .
ピーム孔半径	1. 5	cm
セル数	3568	
タンク数	152	
励振電力	81.7	MW
ビーム電力	17.4	MW
全電力	99.1	MW
クライストロン数	36	
クライストロン電力	3.0	MW
横方向位相進み	67.9 ~ 25.	2 degree
規格化アクセプタンス(90 % x)	29	π mm • mrad
規格化アクセプタンス(100 % x)	36	π mm • mrad
規格化アクセプタンス(90 % y)		π mm·mrad
規格化アクセプタンス(100 % y)	34	π mm·mrad
最大入射エネルギー幅	1.5	MeV (90 % 半幅)
最大出力エネルギー幅	4.4	MeV (90 % 半幅)
最大入射位相幅	87	degree
最大出力位相幅	32	degree