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Abstract

Simulation of deuteron acceleration in the KEK 20-MeV proton linac
was performed. The acceleration with an injection energy of 555 keV
instead of 375 keV is very promising. This option allows the same
accelerating field distribution and the same focusing field strength as
those for protons, though it requires the increase of rf power by 20 —
50 %. The longitudinal phase acceptance reaches 180° without a buncher
if the energy spread of the injection particles is within + 3 keV.

Normarized transverse acceptance is found to be 1.45 mcmemrad.
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1. Introduction

Accerelation of deuterons in the KEK 20-MeV proton linac was dis-
cussed]) several years ago where computer calculation of both the lon-
gitudinal and the transverse motions was carried out on the basis of
the transit time factors bf deuterons measured by a bead perturbation
methodz). They concluded that it would be rather easy to accelerate
deuterons with an injection energy nearly equal to half the proton in-

jection energy if the optimum field distribution could be obtaind by

careful tuning of fourteen movable frequency tuners of the tank.

In acceleration of deuterons in an Alvarez proton linac, it is
required to satisfy the synchronous condition limited by the existing
tank structures. Provided that deuterons travel on the same stable rf

phase angle as protons, there are two modes of acceleration. One is the

2n-mode which is already employed for protons. In this mode the veloc-

ity of deuteron should be the same as that of proton and thus the output
energy of deuteron is twice as large as that of proton. It also requires
to double the injection energy, the accelerating field strength and the
focusing field strength, which seem to be inappropriate values to our

machine facilities.

The other is the 4w-mode in which deuterons travel one cell during
two rf periods. In this mode the injection energy of deuterons should
be half the energy of protons, while the mome‘nta of both particles are
equal and the focusing field strength should be also equal. This mode

3)

was demonstrated at the BNL 10-MeV linac™’ and was employed in the 20-

MeV Saturne linac to accelerate deuterons, he]ium4) and polarized

protonss).
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From the synchronous conditions for protons and deuterons, the

following relation is derived for each cell in non-relativistic limit,

Ep Tp L coswp = 2 Ed Td [ cosyy s (1)
where Ep = accelerating field for proton,

Ed = accelerating field for déuteron,

Tp = transit time factor of proton,

Td = transit time factor of deuteron,

L = cell length,

wp = stable phase angle for proton,

by = stable phase angle for deuteron.

We found from the relation (1) that if the ratio of Tp to Td keeps con-
stant throughout the tank, there is no need to change the accelerating
field distribution along the tank. In particular when Tp = ZTd, the

accelerating field strength for both particles is exactly the same.

Fig. 1 shows the measured transit time factors for protons (Tp) and
for deuterons (Td) in the KEK 20-MeV 1inac2). Unfortunately the ratio
of Tp to Td varies greatly along the tank. Fig. 2 shows the designed
accelerating field (Ep) for protons and the optimum accelerating field
(Ed) for deuterons calculated by the relation (1). In our tank the

designed accelerating field distribution is tilted as

E = 1.5 + 0.04z (Mv/m) , (2)

where z is the length in m measured from the low energy end. The injec-
tion energy of proton is assumed to be 750 keV and the output one 20.8
MeV. For deuteron acceleration in the optimum field distribution shown
in Fig. 2, it is necessary to make a large change in the existing field
distribution, which might be done by tuning the fourteen frequency

tuners.

S. Ohnuma and Th. Sluyters pointed out in their study of deuteron
acceleration that there is another promising injection energy which is
much higher than half the proton injection energy3). According to their
preliminary results, a large longitudinal acceptance (150°) would be
expected with an injection energy of 545 keV, provided the energy spread

of the injection particles is kept within 1 keV.

Since we do not have sufficient knowledge of getting the desired
field distribution by the use of tuners, it is desirable to find the
conditions of acceleration of deuterons which can be attained with a
minimum change of tuners. Under such a field distribution, alternating
acceleration of protons and deuterons is possible with a negligible time

of tuning.

2. Calculation

Computer calculation was performed using modified PARMILA code in
which some modifications were added to accelerate deuterons in a proton
linac. The transit time factors used in the calculation are based on

ref. (2) and shown in Fig. 1.

We assume eight types of accelerating field distribution for



acceleration of deuterons,

type-1) the optimum field,

type-2) the proton field,

type-3) the proton field multiplied by a factor of 1.1,
type-4) the proton field multiplied by a factor of 1.2,
type-5) the proton field multiplied by a factor of 1.3,
type-6) a constant field of 1.8 MV/m,

type-7) a constant field of 2.0 MV/m,

type-8) a constant field of 2.2 MV/m,

where the proton field means the designed field distribution for protons

represented by eq. (2).

2.1 Longitudinal motion

To find a longitudinal acceptance, we start with the test particles
shown in Fig. 3. From Fig. 4 to Fig. 11 we show the transmitted particles
in an input phase space. The remarkable feature is the existence of the
continuous passband in addition to a well known "golf-club" acceptance.

In the optimum field distribution, we obtain a.longitudinal acceptance
like a golf-club located at the center energy of 375 keV shown in Fig.
12. The output emittance is shown in Fig. 13. There are not transmitted

particles in a constant field below 1.6 MV/m.

The details of the “"stomach-like" passband around the injection
energy of 555 keV were studied. The results are shown in Fig. 14 — Figq.

27. In the proton field with an injection energy of 553 keV, we have
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the phase acceptance of 60° (Fig. 14) if the energy spread of input
particles is within % 1 keV. The longitudinal acceptance increases with
the increase of the strength of the accelerating field and reaches 180°

in the type-5 field with the energy acceptance of * 3 keV (Fig. 20).

Longitudinal phase oscillations versus cell numbers are represented
in Fig. 28 — Fig. 36. If is found that the deuteron with an injection
energy of 555 keV travels in the low energy part of the tank as if it
moves in a buncher. The amplitudes of phase oscillations are larger
than those in the optimum field with an injection energy of 375 keV,
leading to a large distribution of the output emitances in the eight

types of accelerating field.

Fig. 37 shows the longitudinal capture efficiency of deuterons for

eight field distributions. It seems very attractive to use these injec-

" tion energy regions in acceleration of deuterons. In this case we need

not change the field distribution, though some extra rf power is required
to raise the accelerating field strength. This increase of an rf power
(20 — 50 %) is quite easy since a big power of 2 MW for beam loading
compensation in the usual acceleration of high intensity proton beam
would be used to increase the accelerating field strength in the accel-
eration of low intensity deuteron beam. Choosing the injection energy
of this region, we can not expect a large incregse of capture efficiency
by using a buncher because the energy acceptance is more or less a few
keV. However, capture efficiency of more than 40 % will be expected

without a buncher.

One disadvantage in the selection of higher injection energy is to
increase the focusing strength in the beam transport line between the

preaccelerator and the linac. The required increase of focusing strength



is 21 % and 33 % for the inejction energy of 555 keV and 660 keV re-

spectively. If the focusing strength could be increased by 33 %, the

higher passband around the injection energy of 660 keV is also promising.

In this case we could expect more increase of beam intensity in the ion

2

source since a current density is proportional to V3/ , where V is a

voltage of the extractioﬁ electrode and is equal to the injection energy.

2.2 Transverse motion

Transverse motions were calculated under the designed focusing
field strength for protonse) which has a magnetic field gradient of 110

Wb/m3 at the tank entrance.

The input acceptance and the output emittance are shown in Fig. 38
— Fig. 53 for eight accelerating field distributions. The normarized
acceptance of 1.47 mcmemrad is obtained in the optimum field with an
" injection energy of 375 keV. In other cases with higher injection
energy almost the same acceptances as in the optimum field are obtained.
From the results of calculation, it is not necessary to change the
focusing strength in the low energy part of the tank. There is no
problem in the tranverse motion since a normalized emittance of 0.5
em"mrad is easily obtained at the injection end of the linac by the

duoplasmatron ion source used in KEK72

Summary of the acceleration of deuterons is shown in Table 1. The
output energy spread is within + 100 keV except for the cases of type-6

and type-7.

3. Conclusion

Detailed computer calculation was performed to study the conditions
of the acceleration of deuterons in the KEK 20-MeV linac. It is found
that the acceleration with an injection energy of 555 keV instead of 375
keV is very promising. There is no need to change the accelerating
field distribution and the focusing field strength which are employed
for protons, though the increase of rf input power by 20 — 50 % is needed.
The longitudinal phase acceptance reaches 180° without a buncher if the
energy spread of the injection particles is within * 3 keV. Normarized

transverse acceptance is found to be about 1.45 wcmemrad.
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Fig. 1 Measured transit time factors
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(Ed) calculated by eq. (1).
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Fig. 25 Longitudinal output emittance
in the field of 2.0 MV/m.
Horizontal: 20° /div,
vertical: 200 keV/div.
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Fig. 27 Longitudinal output emittance
in the field of 2.2 MV/m.
Horizontal: 20° /div,
vertical: 200 keV/div.
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Fig. 26 Details of longitudinal
acceptance in the field of 2.2 MV/m.
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Fig. 30 Phase oscillations in the
proton field. Wipn= 553 keV,
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Fig. 32 Phase oscillations in the
proton field x 1.2. Wjign= 553 keV,
AW = 0.
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Fig. 33 Phase oscillations in the
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Fig. 35 Phase oscillations in the field
of 2.0 MV/m. Wg,= 555 keV, AW = 0.
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Fig. 36 Phase oscillations in the field
of 2.2 MV/m. Wjin= 557 keV, AW = 0.
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Fig. 38 Transverse input acceptance
(x-x') in the optimum field.
Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.

Fig. 40 Transverse input acceptance
(x-x') in the proton field.
Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.
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Fig. 39 Transverse output emittance
(x-x') in the“optimum field.
Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.

Fig. 41

Transverse output emittance

(x-x') in the proton field.
Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.
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Fig. 42 Transverse input acceptance
(x-x') in the proton field x 1.1.

Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.
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Fig. 44 Transverse input acceptance
(x-x') in the proton field x 1.2.

Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.
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Fig. 43 Transverse output emittance
(x-x') in the proton field x 1.1.
Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.
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Fig. 45 Transverse output emittance
(x-x') in the proton field x 1.2.
Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.
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Fig. 46 Transverse input acceptance
(x-x') in the proton field x 1.3.
Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.
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Fig. 48 Transverse input acceptance

(x-x') in the constant field of 1.8 MV/m.

Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.
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Fig. 47 Transverse output emittance
(x-x') in the proton field x 1.3.
Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.

-0.20  x-xp

Fig. 49 Transverse output emittance

(x-x') in the constant field of 1.8 MV/m.

Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.
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Fig. 50 Transverse input acceptance
(x-x') in the constant field of 2.0 MV/m.
Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.
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Fig. 52 Transverse input acceptance
(x-x') in the constant field of 2.2 MV/m.
Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.
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Fig. 51 Transverse output emittance

(x-x') in the constant field of 2.0 MV/m.

Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.

] -0.20 X-xpP

Fig. 53 Transverse output emittance

(x-x') in the constant field of 2.2 MV/m.

Horizontal: 0.2 cm/div,
vertical: 0.04 rad/div.



