第2回ハドロン加速器推進連絡会資料

200 MeV 陽子リニアックの概要

1998年6月17日 加速第4研究系 加藤隆夫

まとめ

本リニアックは大強度ビーム (ビーク電流30 mA、平均電流200 μA、将来はピーク電流60 mA) を高エネルギー (200 MeV、将来は400 MeV) まで加速する。このような大強度高エネルギーリニアックでは、エミタンスの劣化を小さくし、加速途中のビーム損失を少なくして、ビームを安定に供給する事が重要である。その為に (1) ビームに対する収束力、(2) 運転時の動作特性、(3) ビームの性質の劣化の原因となる様々なエラーに注意して、デザインと製作を行う。加速効率、製作及び運転の容易さにも留意する。

1.200 MeV リニアックの概要

要求仕様を表1に示す。全体構成を図1に示す。加速管のパラメータを表2に示す。

2. リニアックの特徴

- · 高い周波数 324 MHz (従来 201 MHz)
- ・安定な運転を期待出来る加速電場の設定
 - ・DTL では 0.6 KL (キルパトリックリミット)、SDTL では 1.2 1.3 KL (1 KL=17.8 MV/m)
- ・クライストロン 2.5 MW ピーク (従来 3 極管又は 4 極管)
- ·大強度 ビーク電流 30 mA、平均電流 200 µA (従来 10 µA) の加速
- ・RFOの採用(従来はコッククロフト750 keV 直流加速器)
 - · PISL (π-mode stabilizing loop)による安定化
- ・ポストカップラーにより安定化した DTL
- ・新しい加速管構成ーーー>分離型 DTL (SDTL) の採用
- ・新しい四極直流電磁石の製作法を採用 (栄型電鋳製作法)

3. 設計及び建設の指針

- 3.1 ビーム損失が小さい、安定な、運転を目指す
 - ・高い運転周波数の選定(324 MHz、従来は201 MHz)により、空間電荷効果が低減され(表3)、 且つクライストロンが使用可能となった
 - ・3-MeV RFO の採用により、低エネルギー部の優れたビームの性質が期待出来る
 - ・縦と横の収束力のバランスを保つ収束法の採用

(図2)

(equipartitioning focusing method)

・様々なタイプの外乱に対して安定な加速管を使用

RFQ ---PISL $(\pi$ -mode stabilizing loop)

DTL --- ポストカップラーによる安定化

(図3)

SDTL --- 5 セル構成の短い加速管

(図4)

・加速管の運転状態での安定性への配慮

低エネルギー領域の DTL は熱変形による電場の乱れが重要問題

(ポストによる安定化、髙周波発熱を減らす、高い入射エネルギー、充分な冷却)

・ビームサイズとボア径との比を充分とる

(図5)

・縦と横のトランジションへの配慮

(図6)

3.2 ピーク電流の変化に対応してチューニングが容易な事

- ・横方向の収束力変化の為に四極電磁石を採用(永久磁石の代りに)
- ・直流磁石の採用

発熱が大きい事は欠点であるが、パルス磁石に比べて、正確な安定な動作が期待出来る。

3.3 加速管の構成

加速効率、運転時の電場分布の安定性及びエネルギー増強の時の高エネルギー加速管との接続の点でも優れている分離型ドリフトチューブリニアック (SDTL) を50MeV以上のエネルギーで採用(図7)。

4. 今年度製作部分について

初期計画では、第1期建設ではエネルギー200 MeVまで、第2期増強ではエネルギー400 MeVまでの加速管を製作する計画であった。今年度は、第1期建設分の中のエネルギーがおよそ59 MeVまでを製作する。ここに含まれる加速管の構成は、イオン源 + LEBT + RFQ (3 MeV) + MEBT (チョッパー、パンチャーを含む) + DTL (3 タンク、50 MeV) + HEBT + SDTL (2 タンク、58.8 MeV)、全長は約40 mである。ビーク電流30 mA の負水素イオン (パルス幅500 μsec、繰り返し周波数25 Hz) を加速するので、平均電流はおよそ200 μA (chopping ratio=0.56) となる。ビーク出力2.5 MWのクライストロン5本を使用する。平成11年度内にトンネル内への設置を目指す。構成を図8に示す。

· MEBT

図9にビームラインの計算結果を示す。表4と5にバンチャーとチョッパーの特性を示す。

(図11)

- 1) 縦横のビームマッチング:8個の四極磁石、2個のバンチャー (図10)
- 2) ビームチョッピンッグ:2個のチョッパー空洞

· RFO

デザインの概略を表6に示す(by上野)

表 1 Required main parameters of the linac.

	Initial requirement	Final goal	
Particles	H	H	
Output energy	200	400	MeV
Peak current	30	60	mA
Beam width	500	5 00	μsec
Repetition rate	25	5 0	Hz
Average current	200	800	μΑ
Length	<150	~220	m
Momentum sprea	$d \pm 0.1$	± 0.1	%

表 2-1: Parameters of the JHF 200-MeV proton linac (DTL and SDTL).

	DTL	SDTL	
Frequency	324	324	MHz
Injection energy	3.0	5 0.1	MeV
Output energy	5 0.1	200.0	MeV
Length (structure only)	27.0	65.8	m
Length (including drift space)	28.5	92.3	m
Number of tank	3	31	
Number of klystron	3	14	
Rf driving power	3.9	16.7	MW
Total rf power (30 mA)	5.3	21.2	MW
Total length		122.2	m
Total power (30 mA)		26.6	MW
Peak current		30	mA
Beam width		5 00	μsec
Repetition rate		25	Hz
Average current		200	μΑ
chopping ratio		~0.56	

表 2-2: Parameters of the DTL

表 2-3: Parameters of the SDTL

Tank number	1	2	3		Length of unit tank	1.48 - 2.61	m
Output energy	19.2	35.4	50.1	MeV	Number of tank	31	
Length	10.4	8.9	7.8	m	Number of cell	155	
Number of cell	80	41	29		Rf driving power	0.35 - 0.64	MW
Rf driving power	1.16	1.36	1.40	MW	Total rf power (30 mA)	0.48 - 0.78	MW
Total rf power (30 mA)	1.64	1.84	1.84	MW	Accelerating field	3.86 - 3.6	MV/m
Accelerating field	2.5	2.7	2.9	MV/m	Stable phase	-26	degree
Stable phase	-30	-26	-26	degree	Bore diameter	30	mm
Bore diameter	13	22	26	mm			

(1998年4月時点の値、現在修正版を検討中。大きな変更はない予定)

表 2-4: Parameters of the RFQ.

Frequency	324	MHz
Injection energy	5 0	keV
Output energy	3	MeV
Length	3.06	m
Rf driving power	0.323	MW
Vane voltage	87.1	kV (1.89 KL)
Transmission	94	%
Current	32	mA
Emittance	1	πmm-mrad(normalized)

表 3 Accelerator parameters for various operating frequencies.

Frequency	201	300	324	35 0	432	MHz
Emittance(90%)	0.15	0.15	0.15	0.15	0.15	πcm·mrad
						(normalized)
Eacc	2	2	2	2	2	MV/m
Beam radius	2.45	1.85	1.77	1.69	1.47	mm
Δφ	6.4	8.5	9.0	9.6	11.6	degree
В'	43.3	96.5	112.6	131.4	200.2	T/m
σ_{x}^{0}	60	60	60	60	60	degree
$\sigma_{_{x}}$	42.4	5 0.0	51.1	52.2	54.4	degree
$\sigma_{\rm x}/\sigma_{\rm x}^{\rm 0}$	0.71	0.83	0.85	0.87	0.91	
μ_{t}	0.50	0.31	0.27	0.24	0.18	
EGF	5. 0	2.3	1.9	1.6	1.1	%

EGF: emittance growth factor due to the field energy of the bunch of Gaussian distribution.

表4 バンチャーの髙周波特性		表 5	チョッパーの高周]波特性
周波数	324 MHz	周波	数	324 MHz
加速電圧	124 kV	加速	軍場	1.4 MV/m
パルス幅	630 µs	パル	ノス幅	222 ns
繰り返し	50 Hz	パル	ス間隔	278 ns
Q_{o}	28300	Q_L		20
空洞励振ピーク電力	10 kW	繰り	返し	50 Hz
空洞平均髙周波損失	0.3 kW	空洞	헤振ピーク電力	20 kW
加速モード	TM010	空洞	『平均髙周波損失	1 W 以下
		動作	モード	TE11

表 6 Beam Optics Design of JHF-RFQ (Ueno)

- (1) KEKRFQ determine the cell parameters in Gentl-buncher $(\phi \text{ s}=-88^{\circ} \sim -30^{\circ} : \text{constant longitudinal acceptance})$ acceleration section $(\phi \text{ s}=-30^{\circ} : \text{constant transverse})$ acceptance).
- (2) Try and error by using simulation codes (PARMTEQ, PARMTEQm :PARMTEQ including multipole field effects) determine the cell parameters in shaper(ϕ s=-90° \sim -88°).

	JHP-RFQ	JHF-RFQ-0	JHF-RFQ
		(Design Report)	(Recent Design)
E_{inj} , E_{GBE} , E_{ext} (MeV)	0.05,0.25,3	0.05,0.25,3	0.05,0.29,3
*E _{GBE} : Energy at	the end of gentle-bu	ncher.	
Variables in	L _{sh} (shaper	$L_{SH1}(\phi \text{ s=-90}^{\circ} \sim -88^{\circ})$)
shaper design	length)	m _{SH1} (modulation factor	r at z=L _{sh1})
		$L_{SH1}(\phi s=-88^{\circ})$	
Cavity Length (m)	2.69	2.69	3.06
ε_{t} 90%(π mm·mrad)	1	1	1
& I(mA)	20	32	32
of injected beam			
in simulation			
Transmission			
PARMTEQ	94%	96%	96%
PARMTEQm	74% : $\rho = .75$	$r_{b} = 77\%: \rho = .75r_{b}$	$94\%: \rho = .89r_b$
(ρ :vane-tip curva	ature)	$(92\%: \rho = r_b)$	
Inter-vane	90.5	94.6	87.1
Voltage (kV)			
Measured/Estimaed	480 (mea.)	367 (esti.)	323 (esti.)
RF wall loss (kW))		

JHF 200-MeV PROTON LINAC

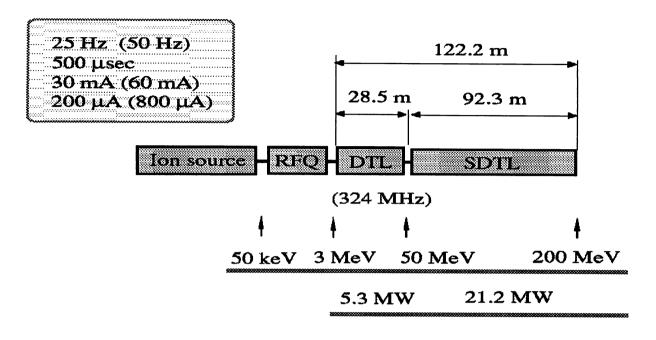


図1 200 MeV リニアック全体構成。

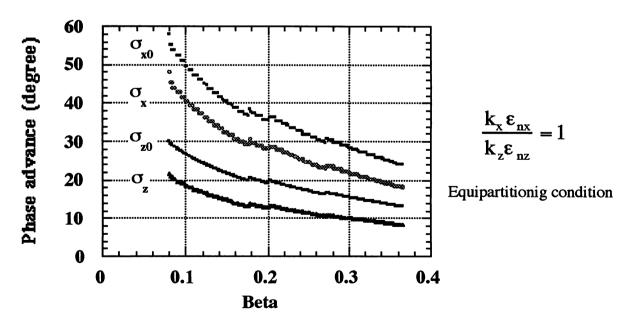
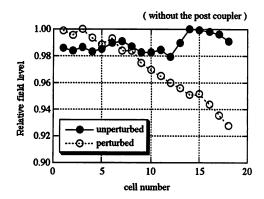
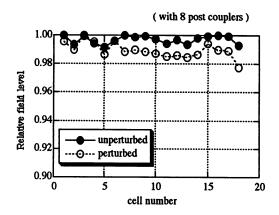




図2 Phase advances in both the transverse and longitudinal phase spaces along the DTL. A peak current of 30 mA is assumed.

 $\boxtimes 3-1$ Average Accelerating field distribution of the high-power model of the 432-MHz DTL without post couplers.

 $\boxtimes 3-2$ Average Accelerating field distribution of the high-power model of the 432-MHz DTL with tuned 8 post couplers.

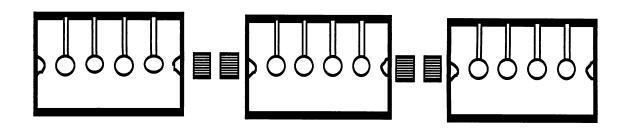


図 4 Schematic view of the SDTL structure. The focusing magnets are indicated by squares.

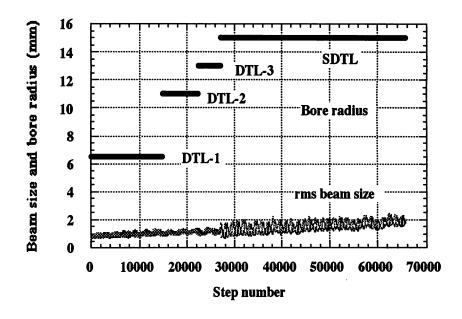


図 5 Variation of rms transverse beam size and bore radii along the linac. One cell corresponds to 181 steps.

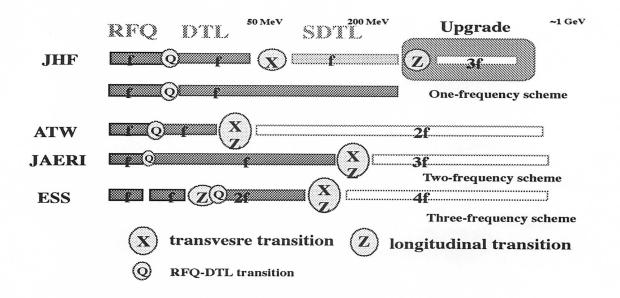


図 6 Configuration of the linac; 'f' means the operating frequency.

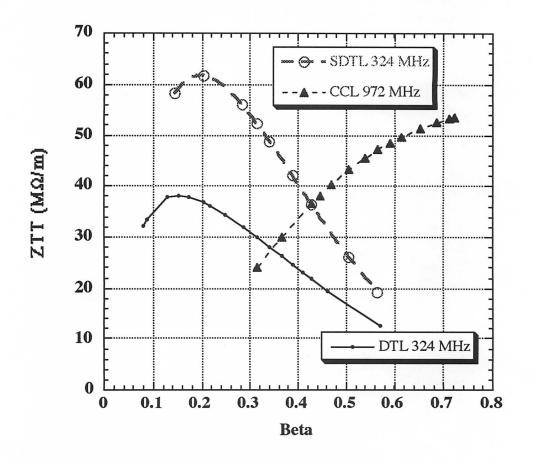


図7 Effective shunt impedances used for the JHF proton linac.

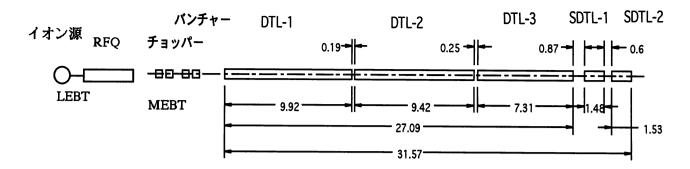


図8 今年度製作部分の加速管。

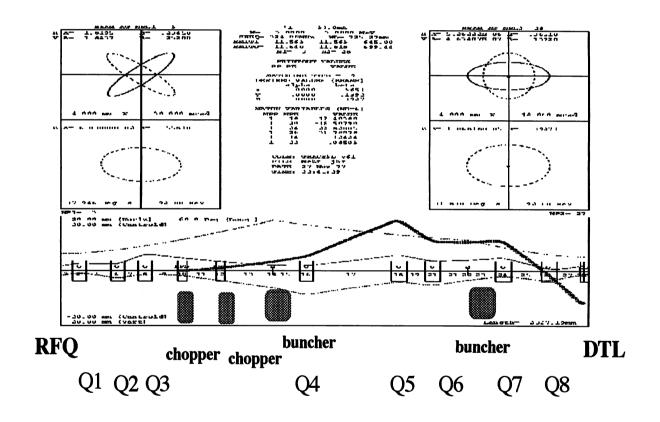
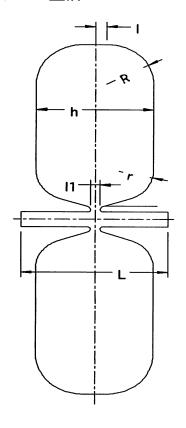
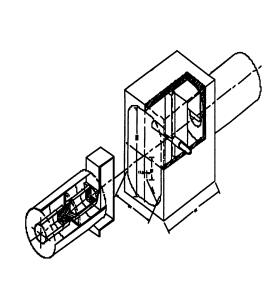



図 9 TRACE 3-D output of the MEBT for Type A. In the up-left are the input beam phase spaces and in the up-right is the matched beam with DTL. The bottom are the beam profiles in z, x and y directions, respectively. The dark line traces the beam-centroid offset by the two RFDs.


図10 バンチャー空洞

パンチャー基本寸法

直径	<i>5</i> 80	mm
ビームフランジ間の長さ	160	mm
ギャップ長さ	14	mm
外半径	65	mm
内半径	48	mm
ビーム孔直径	13	mm

図11 チョッパー空洞

チョッパーの基本寸法

ナヨッパーの基本寸法		
ビームフランジ間の長さ	172	mm
軸方向空洞内壁間距離	172	mm
横方向空洞内壁間距離	306	mm
縦方向空洞内壁間距離	270	mm
電極軸方向長さ	29	mm
電極横方向幅	20	mm
電極ギャップ長	10	mm
磁場シールドパイプ長さ	80.5	mm
外側半径	61	mm

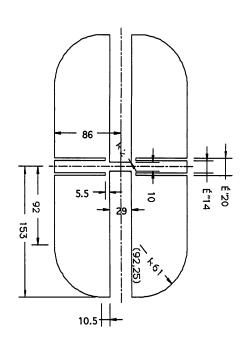


Table 4.12 Summary of normalized emittances and energy spread in the JHF 200-MeV linac.

	Transv	verse	Longitudin	al
Injection beam	Type-A rms / 90%	Type-RFQ rms / 90%	Type-A rms / 90%	Type-RFQ rms / 90%
	π mm-mrad		$\pi \mathrm{MeV} ext{-deg}$	
3-MeV input	0.187 / 0.805	0.248 / 1.06	0.133 / 0.566	0.087 / 0.371
200-MeV output	0.279 / 1.24	0.324 / 1.43	0.274 / 1.18	0.255 / 1.08
99% ΔW (at 200 MeV)			0.917	0.954 (MeV)

ps 40 MeV リニアックでは 20 ---> 40 MeV まで加速する間に 横方向 50% - 2 倍のエミッタンス増加

1) 収束力

高い周波数 高いRFQ エネルギー equipartition & const phase matched beam injection transverse and longitudinal 四極電磁石による可変 tune

2) 運転時の特性

電場の安定性 stabilized structure (RFQ, DTL) short tank (SDTL)

two tank drive --- beam loading の補償の均一化 transition の分離 space-charge effects, no longitudinal transition up to 200 MeV 色々な種類の動作時の摂動を小さくする 発熱の影響、チューナー動作による摂動

エラーへの配慮 MEBT ビームマッ

MEBT ビームマッチング
MEBT ビームモニター
磁石設置精度
電場分布
全系の整列のモニター
最小のタンク間ドリフトスペース