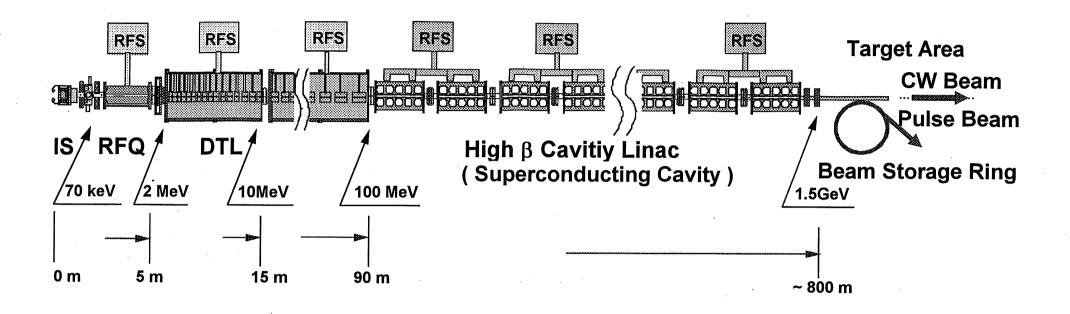
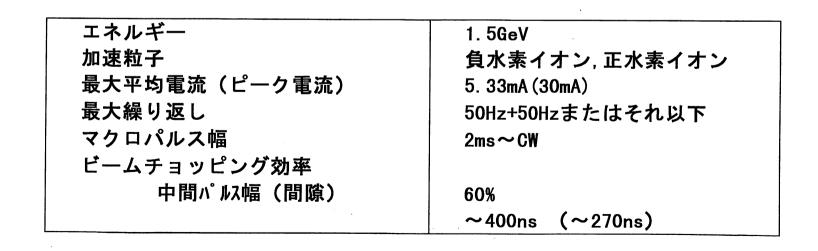
平成8年12月5日(木) 第1回中性子科学研究委員会 第1回中性子利用専門部会 第1回加速器開発専門部会 資料 No. 1-5

大強度陽子加速器の開発


- (1) 基本仕様と開発の進め方
- (2) 開発状況と今後の展開


中性子科学研究委員会 • 専門部会合同会合

平成8年12月5日(木)

陽子加速器研究室 日本原子力研究所 東海研究所

中性子科学研究用大強度陽子加速器

物理的課題

ビーム軌道計算の精密化(空間電荷効果(非線形効果)の正確な考慮) ビームハローの予測精度向上(10⁻⁴ないし10⁻⁵) ビームスピルの低減化

工学的課題

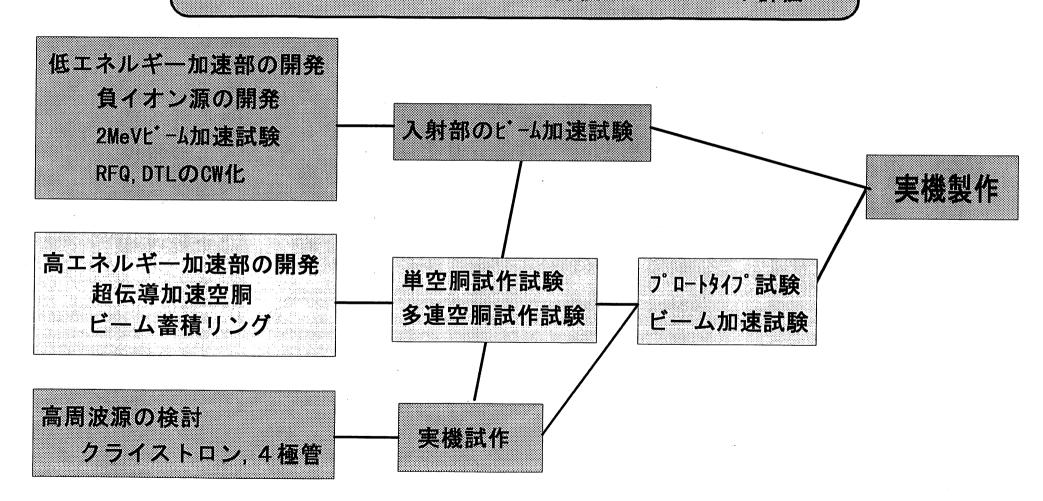
全体概念設計(機器の構成・配置・性能の設計)
加速器機器構造・高周波源系及び直流電源系の設計
信頼性・保守性(故障率、機器の寿命、稼働率)の解析・評価機器の据付、組立、調整、運転シナリオの評価と構築
建家、電気設備、給水設備、空調設備の設計
放射線遮蔽、放射化、許認可対応、安全・保護システムの構築と評価

加速器機器

高輝度正・負イオン源 高周波4重極型リニアック(RFQ) ドリフトチューブリニアック(DTL) ビーム伝送系 超伝導加速器(SRF) ビーム蓄積リング 短パルス生成装置 ビームダンプ 真空排気系,冷却系

高周波源系及び直流電源系 高周波増幅器(4極管、クライストロン) 高周波源用直流電源 高周波出力伝送システム 集束用電磁石用電源

ビーム計測系、制御系、インターロックシステム


大強度陽子加速器の技術開発

加速器システム設計

ビーム軌道計算

ピームスピルの評価

コスト評価

各加速器機器詳細

イオン源(正負イオン共通)

引き出し電圧:

引き出し電流:

規格化エミッタンス:

運転モード:

70kV

50mA

 $0.1\pi mm. mrad (rms)$

連続 (CW)

RFQ

タイプ:

加速電流:

運転モード:

加速共振周波数:

加速エネルギー範囲:

ベーン間電圧:

平均ボア半径:

全長:

最終同期位相:

诱過率:

4 ベーン型

ピーク30mA

2ms/50Hz~連続(CW)

200MHz

70keV~2MeV

88kV

5.93mm

3.3 m

-30°

97%

DTL

タイプ:

加速電流:

運転モード:

加速共振周波数:

ビーム集束系:

入射エネルギー:

出射エネルギー:

平均加速電場勾配:

ビームボア直径:

位相進み:

同期位相:

集束磁場強度:

ドリフトチューブリニアック

ピーク30mA

2ms/50Hz~連続 (CW)

200MHz

DT 内蔵 4 極電磁石

2MeV

100MeV

1.5MV/m

20mm

65°

-30°

60~25T/m

超伝導リニアック

タイプ: 純二オブ製楕円空胴

加速電流: ピーク30mA

運転モード: 2m/50Hz~連続 (CW)

加速共振周波数: 600MHz

ビーム集束系: 4極電磁石

入射エネルギー: 100MeV 出射エネルギー: 1.5GeV

平均加速電場勾配: ~7.5MV/m

ビームボア直径: 150mm

モジュール間距離: ~185cm

(含む集束要素間距離: 45cm)

キャビティー長: <1m

キャビティー内の最大セル数: <10

最大表面磁場強度: <16~20MV/m

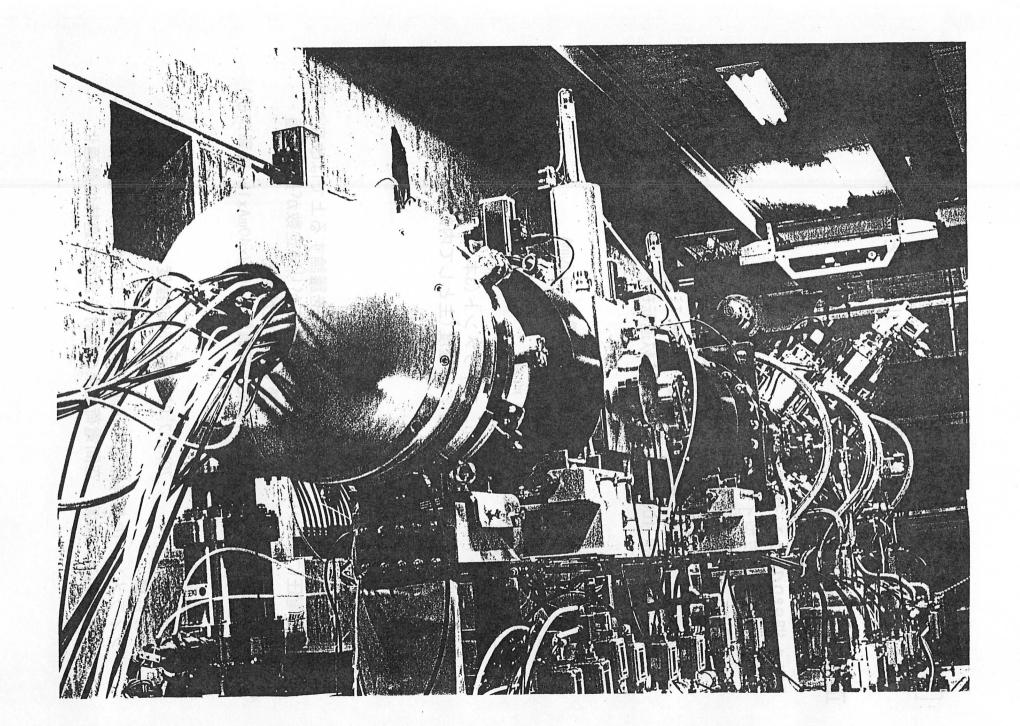
最大高周波カップラー入力: 100kW~200kW

ビーム蓄積リング(暫定案)

入射粒子: H⁻ 周回粒子: H⁺

リング周長: 185m

スーパーペリオド: 12 直線部: 10.8m


直線部: 10.8m 偏向電磁石半径: 8m

偏向磁場強度: 0.94T

入射エネルギー: 1.5GeV 出射エネルギー: 1.5GeV

出射エネルギー: 1.5GeV 入射時間: 2~3.7ms

繰り返し: 50Hz 蓄積粒子数: 4x10¹⁴

[1] イオン源の開発

*開発の初期から那珂研NBIグループとの協力開発

正イオン源

【第1期R&Dのコンセプト】

マルチカスプ型イオン源

100kV、2段加速方式(4枚電極構造)

シングルアパチャー、タングステンフィラメント(4本)

加速電圧: 100kV, 全引出し電流: 140mA, エミッタンス: 0.5 mm mrad

PW: 1. 2ms, RR: 100Hz, Duty: 12% パルス運転モート、~連続モート、

【現状の達成値】

加速電圧:

100kV 全引出し電流:150mA

プロトン比:

80% 程度

rmsエミッタンス: 0.23πmm mrad

引出し電流密度: 178mA/cm²

フィラメント寿命:~200h、フィラメント(3本)

放雷頻度:

3~4 回 / h 程度(主として内部放雷)

【問題点】

プロトン比: ~85%止まり

エミッタンス:

 $> 0.2\pi$ mm mrad (rms)

放電頻度:

将来の装置の安定性を議論する上では改良の要

加速電圧によるパルス化:電源電圧 立下がり時定数が長く不適

構造:

大型重量級で保守性が劣る

CWモード:

電極冷却能力未確認(50kVx40mAx1h 於那珂研)

【今後の展開】

引出し電圧:

70kV, プロトン電流:50mA程度

当面の目標

フィラメントの長寿命化 (LaB。系の試験、ECRタイプの試作) エミッタンス低減 空間電荷効果の検討を含め加速特性最適化

負イオン源

【第1期R&Dのコンセプト】

体積生成型負付ン源(正付ン源プロトタイプの電極構造を変更)シングルアパチャーとマルチアパチャーの 2方式 負イオン生成効率向上のためのセシウム添加機構あり加速電圧70kV、負イオン電流50mA

【現状の達成値】(那珂研のテストスタンドに於ける初試験結果)

セシウム添加の結果

シングルアパチャー:

加速電圧:50kV 全引出し電流:8mA

引出し電流密度:

 13mA/cm^2

マルチアパチャー:

加速電圧:50kV 全引出し電流:70mA

72

引出し電流密度:

 16mA/cm^2

with 6 754

体積生成方式のみの場合

マルチアパチャー:

加速電圧: ~50kV 全引出し電流: 20mA前後

【問題点】(現状は負イオンビーム加速本格試験開始の準備段階)

引出し電流量向上

セシウム添加~RFQへの影響の評価

ビーム出力の長時間安定性、再現性

【今後の展開】

現リニアック棟に於ける負イオン加速試験の開始(平成9年1月から) ビーム引出しは100kV (RFQへの入射条件維持のため) 負イオンビームのエミッタンス測定、LEBTのビーム透過率測定

長寿命化、ECR方式の検討は正イオン源と同様

長寿命化、ECR万式の検討は止イオン源と同様

残留ガスによる中性化の影響と対策検討

[2] RFQの開発

【第1期R&Dのコンセプト】

4ベーン型RFQ、201.25 MHz、 100kVプロトン入射

PW: 1.2 ms、RR: 100 Hz、Duty: 12 % パルス運転モード

100KeVから2MeVまでの加速範囲

【現状の達成値】

セパレート型*4ベーンRFQの製作、コールド試験、ハイパワー試験 *タンクーベーン構造 分離型(ボルト締付けによる固定方式)

ビーム加速試験

加速エネルギー:

2MeV (コンパクト分析電磁石による測定:精度~5%)

ビーム透過率:

82%

透過ビーム電流: 80mAピーク

運転 Duty :

瞬時 10%、安定 8%

ビームエミッタンス:ダブルスリット型エミッタンスモニターによる測定

X-X' =

0.62 πmm-mrad

Y-Y' =

0.76 π mm-mrad

【問題点】

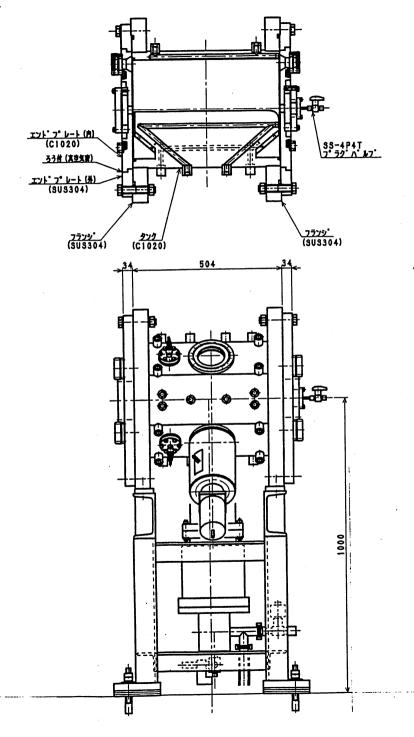
ビーム透過率の向上(計算値 >95% との対応) 放電ブレークダウン頻度の低減 高デューティ運転対応

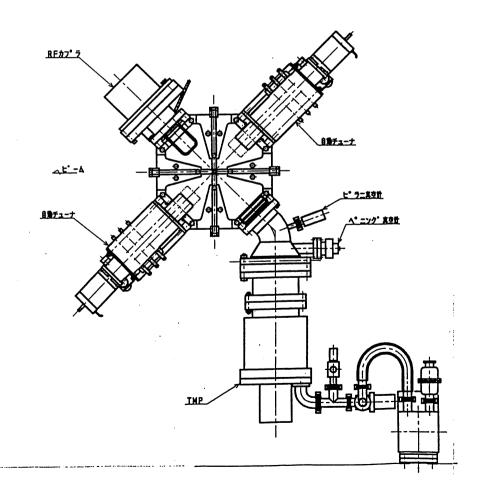
【今後の展開】

CW-RFQホットモデルの製作とハイパワー試験 現RFQの負イオン加速試験(100kVの制限条件) イオン源からのセシウム蒸気拡散効果(放電限界の低下の可能性) RF入力カプラ改良・高デューティ試験 タンク内電場分布平坦化とビーム诱過効率向上

CW-RFQハイパワーモデル

主要仕様


1 共振周波数 200MHz


2 ベーン間電圧 88kV (1.375)

3 ベーン長さ 50cm

4 Q値 13100

5 壁面ロス 35kW (80%Q)

[3] DTLの開発

【第1期R&Dのコンセプト】

アルバレ型ドリフトチューブリニアック

201.25 MHz、 2 MeVプロトン入射

PW: 1.2 ms、RR: 100 Hz、Duty: 12 % パルス運転モード

2 MeV から 150 MeVまでの加速範囲

平均加速電場強度: 2MV/m

ホローコンダクタ型 Q電磁石内蔵 ドリフトチューブ

【現状の達成値】

ホロコン (5 mm x 5 mm)型Q電磁石内蔵 ドリフトチューブ試作開発

磁場勾配:

DTL入射部側 80 T/m

励磁電流:

780A

9セルモデルDTLホットモデル製作

(初段2セルにホロコン Q電磁石内蔵DT)

ハイパワー試験:RF入力:

128kW (加速電場強度:2MV/m)

試験運転 Duty

12%, 20% 安定

各部発熱測定・計算値との比較(良好な一致)

ハイパワー試験後の解体確認:ダメージ部位 無し

和コン型 Q電磁石連続通電試験:励磁電流:780A 550時間運転

【問題点】

ビーム試験の必要性

高デューティ運転対応

DT 取付け精度 : 多連セルDTLの据付組立手法 (職人芸)

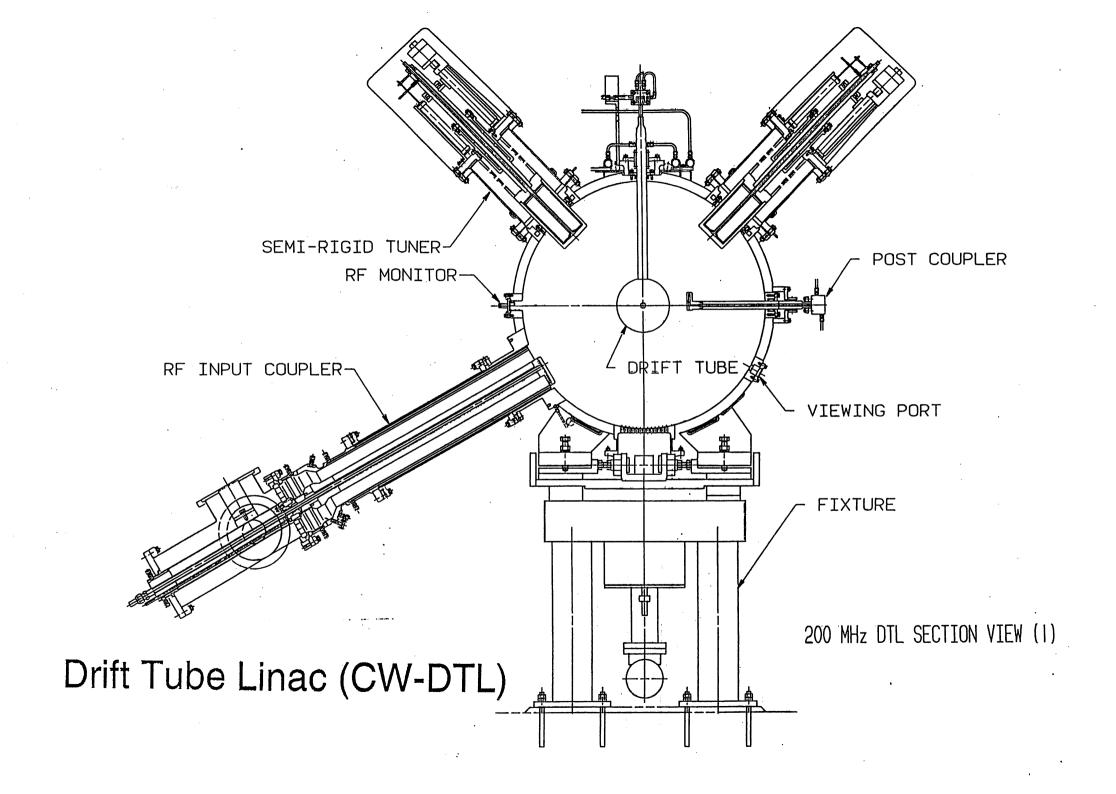
入射部DT用Q電磁石 給電ライン-冷却水配管の組立

【今後の展開】

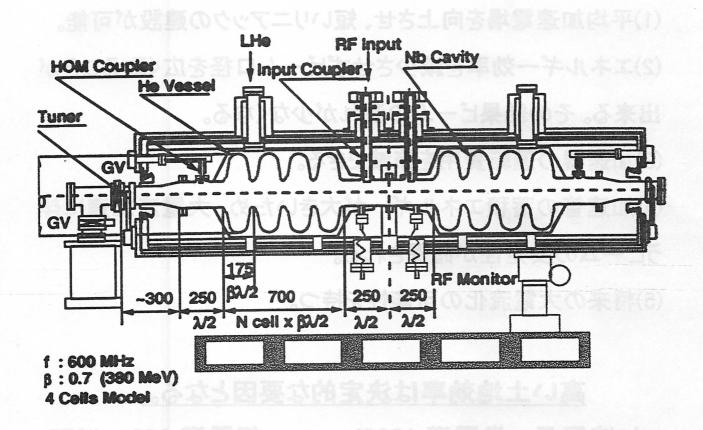
CW-DTL 1/3 コールドモデルの製作とコールド試験

CW-DTL ポストカプラー効果測定:タンク内電場分布

平均加速電場強度の最適化 (~1.5MV/m) とビームダイナミクスの対応


Drift Tube Linac (DTL)

parameters


Tank No			2	3 - 3	44242
Energy	-[MeV]	2 = 33	20 - 67 -	67 = 100	命合計
Current	mA)	- 30	-:-:::30	<i>-:</i> 30	
Frequency	[MHz]	200	:=:;;; ; =200		the state of the s
EO		1.5	The state of the s		
Synchronous Phase Angle	[deg.]	-55~-30∻	-30		
Phase Advance	[deg.]	65	65		
Cells :: : : : : : : : : : : : : : : : : :		135	69	- 59	263
TANK Length :- :- :		3218,233	the second secon	3493-165	The state of the s
Tank_diameter	[cm]	91.751	97_136	96:576	
DT Diameter	-[cm]	20	20	20	
Bore_radius	[cm]	1	~ 1	l l	
Stem_drameter	[cm]	3.6	- 3.6	3.6	
Face angle:	[cm]	0	50	60	
Tank toss (100%Q)		1.31899	1.08115	1.218467	3.58481

simulation result

	RFQ == SEDFL SE
	Output Input Output
X-XP 2100% [\pi cm-mrad, Normalized]	$0.4659 \qquad 0.5462 \qquad \pm 1.3061$
90% [π cm·mrad, Normalized]	0.0974 0.1007 0.1095
RMS [π cm·mrad, Normalized]	0.0216 0.0222 0.0264
Y-YP 100% π cm mrad, Normalized	0.4584 0.6225 1.3154
90% [π cm mrad, NormaLized]	0.0991 0.1003 0.F12
RMS π cm·mrad, Normalized	0.0217 0.0225 0.0272
φ-W: 100% [π deg-MeV, Unnormalized]	6.2697 - 11.2019 - 11.4121
2 = 90% [π deg MeV, Unnormalized]	0.7479 - 0.7392 - 0.9223
RMS - [π deg MeV, Unnormalized]	0.1663 0.1754 0.2332

Superconducting Cavity for JAERI Linac

	O .
'	Cavity
	COS A W P A

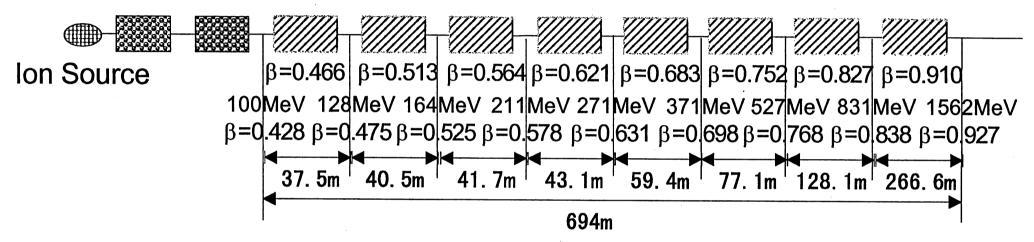
Cavity length <1m
Size of beam tube 15cm
Coupling constant between cell 4.7~2.1%
Accelerating gradient (Eacc) 2.9~7.2MV/m
ZTT/Q 89.5~398

Cryomodule

Interval between cavity ~50cm
Interval between cryomodule ~185cm
(the focusing element distance 45cm)

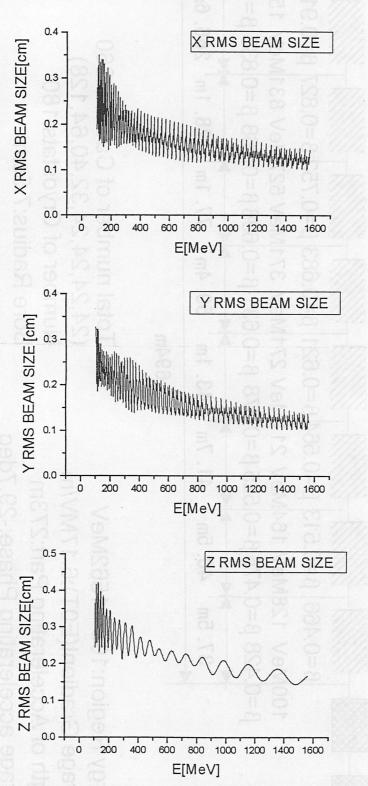
超電導加速器の利点

- (1)平均加速電場を向上させ、短いリニアックの建設が可能。
- (2)エネルギー効率を減少させずビーム口径を広く取ることが出来る。その結果ビームの漏れが少なくなる。
- (3)加速器の運転費用を節減できる。
- (4)加速管の蓄積エネルギーが大きいため、大電流加速に伴うビームの安定性が確保される。
- (5)将来の大電流化の可能性を持つ。

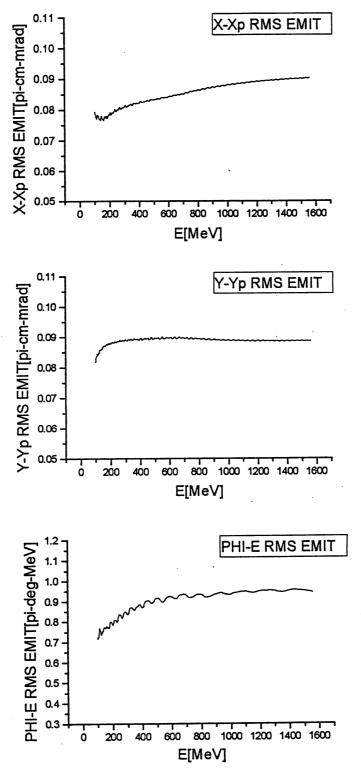

高い土地効率は決定的な要因となる。 加速器長 常電導 1200km vs 超電導 800m 以下

欠点

- (1)開発項目が多く、開発期間が長い。
- (2)フィーリングタイムが長いため、短パルス運転に適さない。
- (3)高周波電源の電圧・位相の制御不安定性が直接ビーム変動と原因となる。


Basic Parameters for Superconducting Accelerator (600MHz)

RFQ DTL



Energy Region:100 - 1562MeV
Average Gradient(E0T):6.17MV/m
Length of Accelerating Part:273m
Average accelerating Phase:-29.7deg
Interval between Cryomodules:185cm
Interval between Cavities:50cm

Total number of Cavities:360 (24,24,24,24,32,40,64,128)
Number of Cryostats:180
Bore Radius:7.5cm
Cavity Wall Loss:23.4kW (4K)
Focusing Strength:12-54T/m

The rms beam size for 8 different β sections and Ep=16MV/m (Q=12-55T/m)

The rms emittance for 8 different β sections and Ep=1/6MV/m (Q=12-55T/m)

Preliminary Parameters for Superconducting Cavity

Case	8 class		8 class
	Ep=16MV/m	Ep=16MV/m	
	Q=12T/m		Q=12-55T/m
Cavity configuration	4 cell		4 cell
Input beam phase	-61.3deg22.3deg		-61.3deg22.3deg
Average phase	-29.7deg		-29.7deg
Accelerating part length(m)	272	į	272
Total length(m)	688	1	688
Number of cavity	360		360
Number of cell	1440		1440
Input emittance(90mA)			
x: π cm.mrad(norm.rms)		0.0	792
y: π cm.mrad(norm.rms)	•	Q.08	317
z:π deg.MeV(rms)		0.7	177
Output emittance(90mA)			
x: π cm.mrad(norm.rms)	0.0947		0.0903
y: π cm.mrad(norm.rms)	0.0942		0.0887
z: π deg.MeV(rms)	0.9008	İ	0.9450
Total wall loss(kW)	23.4	:	23.4

高βリニアック

[1] 高βリニアック加速構造の検討

- *ビーム計算解析コードについてはLANLの協力の下に整備を進めた。
- * 平成7年度から高エネルギー物理学研究所(KEK)との共同研究協定発足ビームダイナミックスの検討を含め、緊密な連携、協力体制で開発を推進中
- *所内 タンデム・FEL 超伝導加速装置担当者との連携

[2] 超伝導空胴

超伝導空胴テストスタンドの整備

クライオスタット

断熱真空槽+FRP製ヘリウム槽

クライオスタット内径800mm、深さ3,500mm

試験領域残留磁場:平均 7 ミリガウス、最小 3 ミリガウス

LHe: 2K 条件の確保: 大容量排気設備: 30,000 lpm

クリーンブース:8m x 5.8 m, 作業環境:クラス10の空気清浄度

空胴加熱+0il Free 超高真空排気ポンプ設置

超純水空胴洗浄装置

超純水製造装置 18 Mohm・cm 超純水:1.5トン製造能力(901/h)

全溶融カーボン(TOC): 30以下(未達成、現状 >300)

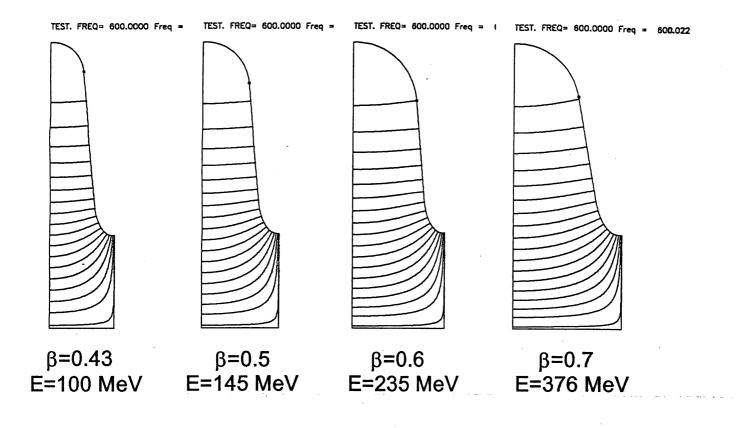
UVランプ、CO2トラップ採用

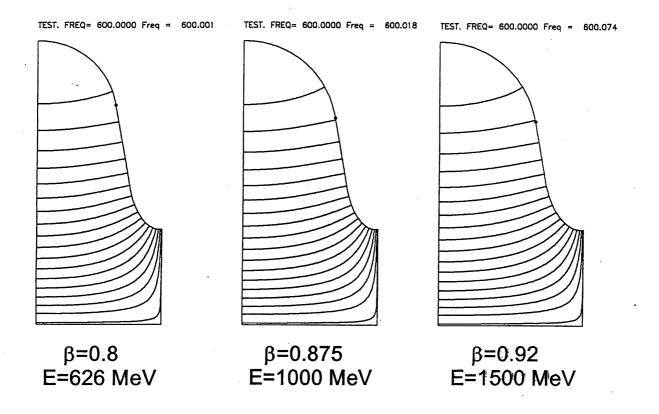
高圧超純水空胴洗浄装置

給水能力:圧力 85 kg/cm²、流量14 lpm、0.1 mmフィルター

超伝導空胴実験

KEKのLバンド空胴特性試験に参加:実験手法の学習

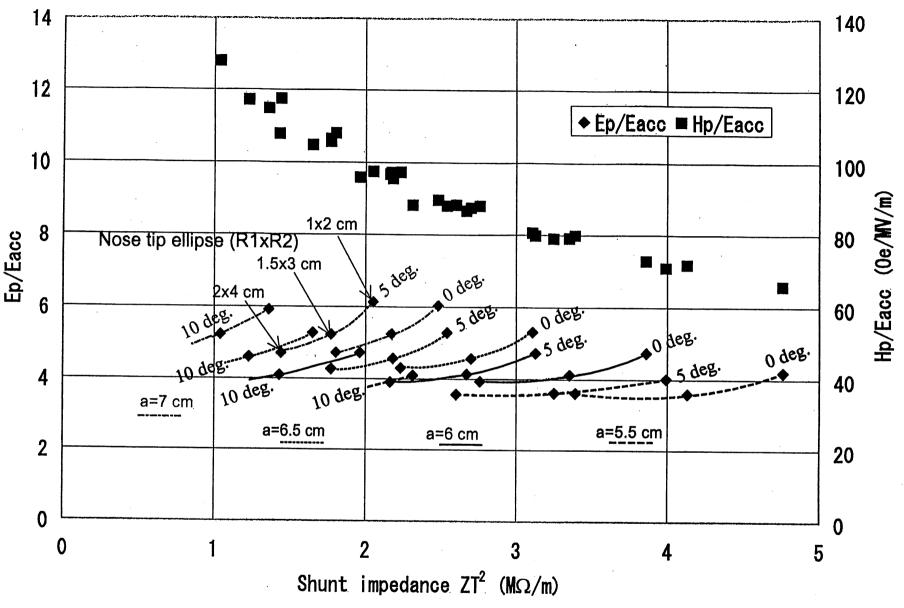

600MHz空胴実験用測定回路系の整備:KEK方式踏襲

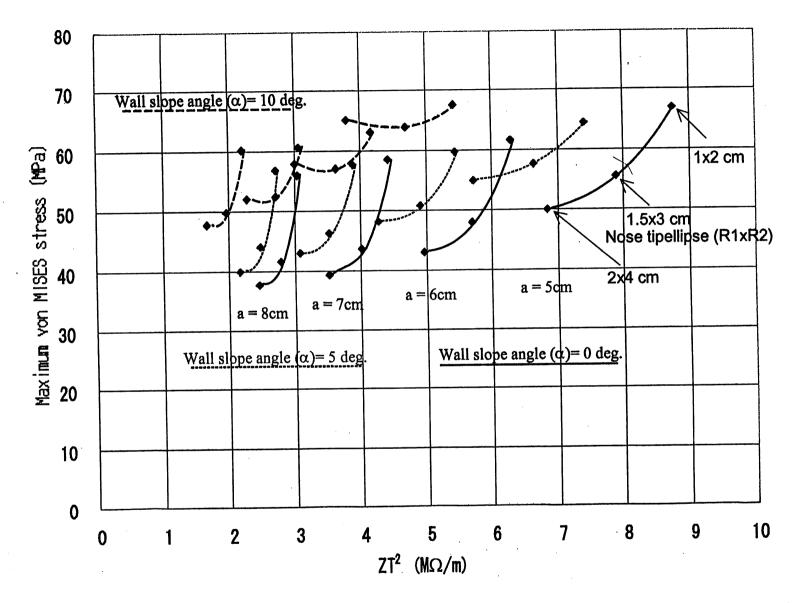

超伝導空胴製作

空胴形状の検討:特に低エネルギー部の構造強度評価

銅板による模擬単空胴の試作

高純度ニオブ板による単空胴の試作

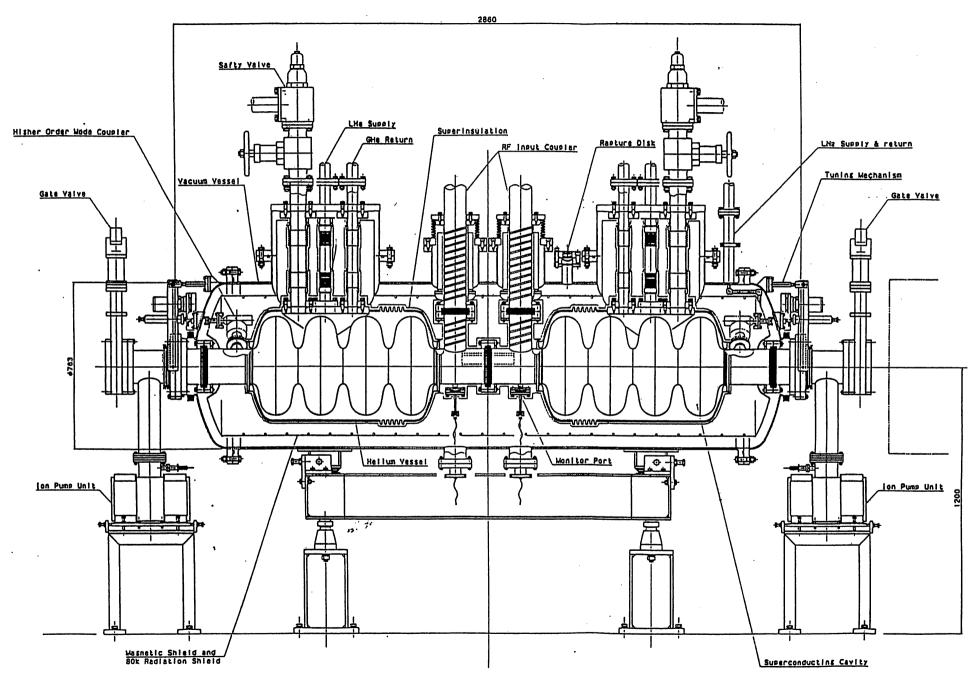



Cavity shape of the preliminaty design (Iris radius is fixed a=7.5cm)

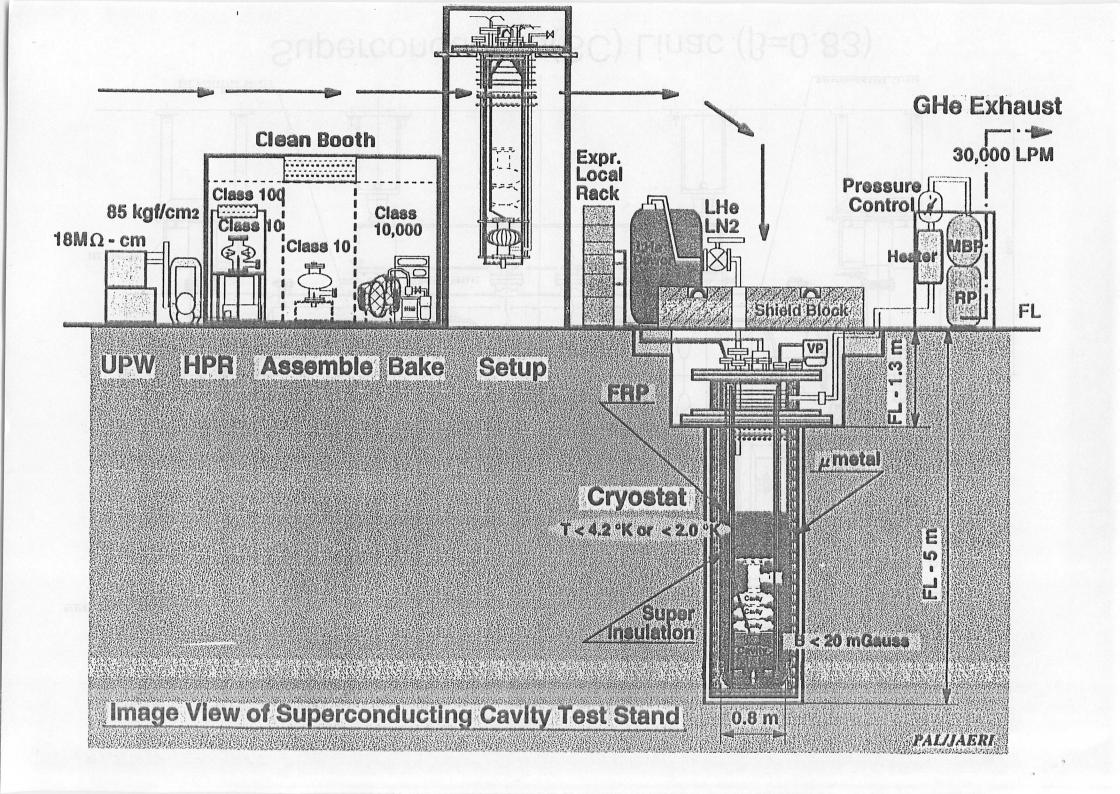
600 MHz, beta=0.5 SC cavity a=7.5 cm, ellipse=1.5x3, AL=5, Iris fixed Deformation Waist Max. 2.7642e-04 at node Maximum displacement = DISPLACEMENT MAGNIFICATION FACTOR = 61.6 ORIGINAL MESH TIME COMPLETED IN THIS STEP 1.00 TOTAL ACCUMULATED TIME ABAQUS WERSION: 5.4-1 DATE: 09-MAY-96 TIME: 17:51:42 von MISES stress (atmospheric pressure side) 70 SECTION POINT 1 4.4729e+07 at node Maximum value = 57 4.7203e+06 at node Minimum value = 44.72E+86 +7.798+06 +1.08E+07 +1. 39E+07 +1.782+07 +2.012+07 +9. 852+07 4. 16E+07 von MISES stress (vacuum side) 77 PROTECTION POINT 5 4.1361e+07 at node Maximum value = 36 2.4478e+06 at node Minimum value = +5.442+06

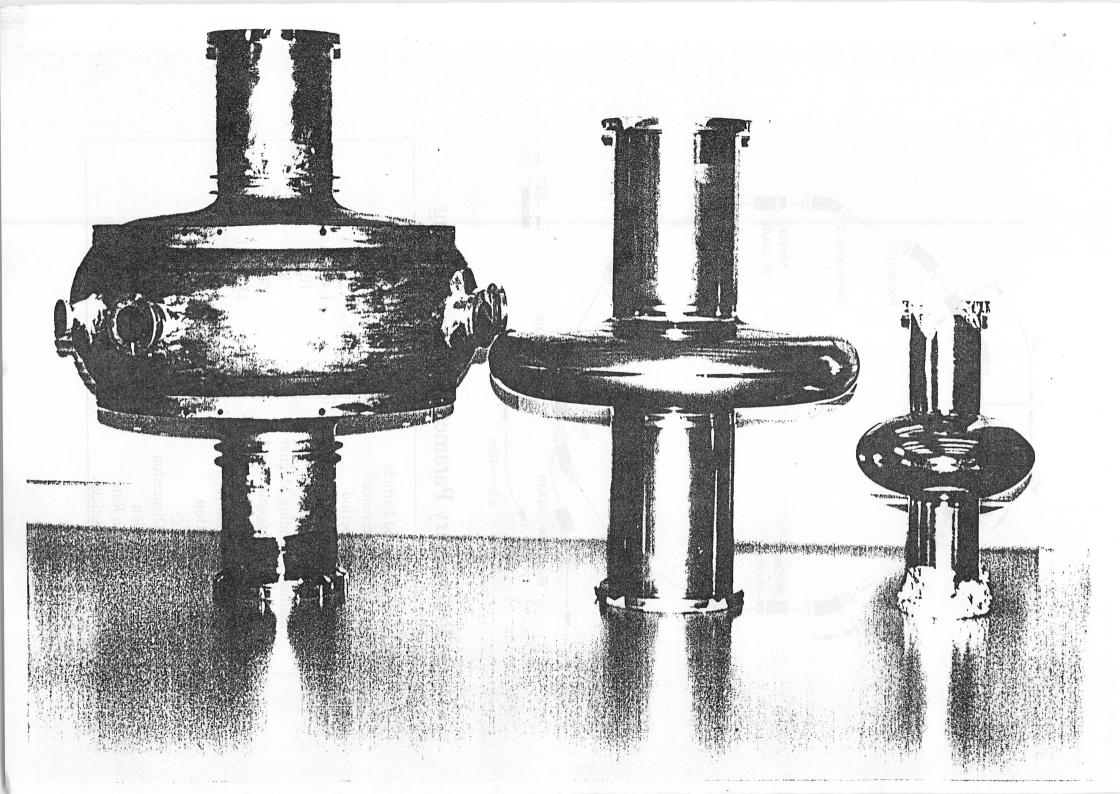
Deformation and maximum von MISES stress distribution at β =0.5 (Iris Fixed)

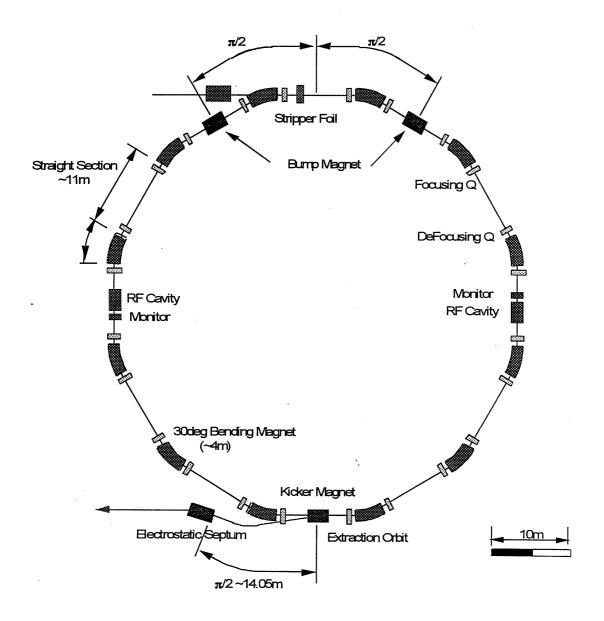
Ep/Eacc and Hp/Eacc vs. ZT² with parameters of iris radius (a), nose tip ellipse shape (R1xR2) and wall slope angle (α) for 600 MHz SC cavity of β =0.43 (100 MeV)



Maximum von MISES stress vs. ZT² with parameters of iris radius (a), nose tip ellipse shape (R1xR2) and wall slope angle (α) for 600 MHz, β =0.5 cavity (Iris fixed)


Preliminary design and their results of the RF and structural analyses


b	E (MeV)	a (cm)	b (cm)	R (cm)	R1xR2 (cm)	(cm)	α (deg)	ZT 2* (M W/m)	ZT²/Q (Wm)	Ep/Eacc	Hp/Eacc (Oe /	Max. von Iris Free	MISES (MPa) Iris Fixed
0.43	100	7.5	22.98	2.57	1.5x3	5.37	5	1.42	75.5	5.92	117.2	126.7	54.8
0.50	145	7.5	22.58	3.56	1.5x3	6.25	5	2.96	127.7	4.80	86.5	110.7	44.7
0.60	235	7.5	22.28	4.96	1.5x3	7.49	5	5.98	208.7	3.87	64.9	91.1	35.7
0.70	376	7.5	22.63	5.08	2x3	8.74	10	8.46	274.6	2.95	57.8	55.6	26.5
0.80	626	7.5	22.44	6.18	2.5x5	9.99	10	11.91	345.5	2.40	50.8	47.5	22.7
0.875	1000	7.5	22.31	7.33	2.5x5	10.93	10	14.93	394.7	2.24	46.0	40.3	20.0
0.92	1500	7.5	22.31	7.58	3x6	11.49	10	16.20	419.2	2.01	45.0	38.9	18.9


^{*} calculated from electric conductivity of Cu L1 = L2 = 0.2 cm

Superconducting(SC) Linac (β =0.83)

Preliminary Parameters of Storage Ring

H ⁺
185m
12
1.49MHz
10.8m
8m
0.94T
(3.3,2.8)
3.09
1.5GeV
±0.19%
2-3.7ms
50Hz
$4x10^{14}$

[3] ビーム蓄積リングの検討

【現状と今後の展開】

シミュレーションコード「MAD」の取得と試計算開始 リング内蓄積電流の空間電荷効果 ビーム入射部・荷電変換部の概念検討

ビーム取出し部の概念検討

リングパラメータ	JAERI	ESS
リング数	1	2
周長 [m]	185	163
セル数	12	15
スーパーペリオド	12	3
ビームパワー[MW]	5	5. 1
入射/取出しエネルギー[GeV]	1.5	1. 334
粒子数	4.17×10^{14}	2.34×10^{14}
周回ビーム電流[A]	100	62. 25
周回周波数[MHz]	1. 492	1. 6714

[大電流ビームの問題]

- ●不安定性(空間電荷制限,マイクロウェーブ不安定性など)
 - ・水平・垂直方向のチューンシフト
 - ・縦方向 (Longitudinal) エミッタンスの増大
- ●ビームローディング
 - 高周波バケットの位相のずれ
 - 磁性体特性の変化
- ●ストリッピングフォイルの短寿命
- ●ビーム損失に伴う放射化

[対策]

JAERI	ESS
検討	2リング構成(リング当たりの周回電流値を低減) アクロマット領域を用いたビーム蓄積リングでビームロスス低減 位相空間ペインティングにより不安定性の回避
	第2高調波を用いたRFシステムで空間電荷力を低減・

[4] RF源の開発

【第1期R&Dのコンセプト】

4極管式RF源

201.25 MHz、ピークパワー:1 MW

PW: 1.2 ms、RR: 100 Hz、Duty: 12 % パルス運転モード

RF給電方式: 気中型同軸管方式

【現状の達成値】

ダミーロード試験結果

1 MW Duty

0.6%

830 kW Duty

12%

定常出力:

~560kW 於 RFQビーム加速試験

AGC, APC

制御良好

【問題点】

HPA出力キャビティ内放電

【今後の展開】

高デューティ運転対応

同上RF給電方式:冷却型同軸管方式の検討

4極管または改良型4極管方式の検討

フィードフォワード制御方式の有効性の確認

600MHz RF源

【現状と今後の展開】

クライストロン (およびクライストロード) の検討

508 MHz での実績からの外挿

700 MHz 構想の装置との関連

出力分割方式、立体回路、サーキュレータ、建家との取合い検討

超伝導加速器髙周波源パラメータ

セクション No.	加速電界 (MV/m)	キャヒ、ティー数	高周波入力 (kW) 16.7mA	高周波入力 (kW) 30mA
1	3.64~ 4.03	24	19. 4	34. 8~34. 9
2	4. 33~ 4. 73	24	25. 3	45. 5~45. 6
3	5. 08~ 5. 51	24	32. 8	58. 8~58. 9
4	5. 91~ 6. 40	24	41. 8	74. 9~75. 0
5	6. 75~ 7. 41	24	52. 4	94.1~94.2
6	7. 61~ 8. 28	32	64. 9~65. 0	116.5~116.8
7	8. 45~ 9. 20	64	79. 1~79. 4	142. 1~142. 6
8	9. 28~10. 04	128	95.1~ 95.6	170.9~171.8

電源構成

低出力管 周波数

出力

600MHZ

大出力管

周波数

600MHz500kW (CW)

100kW(CW) 350kW (パルス)

出力 1,600kW (パルス)

セクション			第1期	第2期			
No.	fャピ ディーー 個数	種類	本数 (立体回路 分岐数)	出力 (パルス) (kW) 16.7mA ** ピーク(平均)	本数 (立体回路 分岐数)	出力 (パルス) (kW) 30mA ** ピーク(平均)	出力 CW (kW) 5.3mA
1	24	低出力管	6(4)*	77.6(4.7)	6(4)*	140(25)	25
2	24	低出力管	6(4)*	101(6.1)	6(4)*	182(32)	32
3	24	低出力管	6(4)*	131(10)	6(4)*	236(42)	42
4	24	低出力管	6(4)*	167(50)	6(4)*	300(53)	53
5	32	高出力管	2 (16)	838(62)	4 (8)	753(133)	133
6	40	高出力管	2(16)+1(8)	1040(31)	5 (8)	934(165)	165
7	64	高出力管	4 (16)	1270(76)	8 (8)	1140(202)	202
8	128	高出力管	8 (16)	1530(92)	16 (8)	1374(243)	243
計	360		低 24 高 17	24458 (1468)	低 24 高 33	43949 (7764)	7764

^{*2}つの直流電源で各々3個のクライストロンにパワーを供給する。 **RF Powerのフィーリングタイムにより2~5割増の可能性あり。

大強度線形加速器の開発タイムスケジュール表

(H8/11/27)

年度	Н9	Н10	H11	H12	H13	H14以降
A I	113	, mv		niz	піз	ПТЖД
加速器の設計・遮設	概念設計(11)	予備設計	製作設計	低沖升一部建設		あエネルキ 一部建設
建家の設計・建設	·	地盤調査・工法	会討 実施設計	強設	1 1 1	
低环冲 加速部技術開発	負付シ源 ピーム	加速試験 BT系	(パルス)試験_		i i i	i
	RF源 設計	製作(RFO用)	製作(DTL用)		1 1 0 0)))
	CW-RFQ N/N°7-	!		10MeVt -A試験、	100MeV実機製	作
	CW-DTL	ハイハ・ワーテスト	実機 (10MeY) 製作		1 1 1)
高球科*-超伝導加速部技術開発 空胸の開発	High \$ (\$ > 0.	5) 単:多連空胸		クライオモシ・ュール	ビーム試験	1 1 1 1 1
	製作	試験	7	7"0-1917"	量産化	実機製作
	Low β (β~0,	5) 単・多連空嗣		クライオモシ・ュール	ビーム試験 /	•
関連技術	試 入力カプラー(HOM			7°0-1917°	量産化	実機製作
t wet	CW-1MW級 クライ	ストロン				
	クライオスタット					
	冷凍機(kW級)	 				i !
	安全・コントロール	 			\mathcal{J}	
蓄積リングの開発	基本仕様決定	概念設計	予備設計	設計	製作	
技術開発エリア改修	設計	改修·整備工事			アセンフ・リーホール(組:	: 江・調整・試験)