400-MeV Linac Beam

- Linac parameters
- Simulation results

KEK T. Kato

2k0114

نان مر راید^{ارد.} ا

RFQ, DTL, SDTL, ACS and SCC parameters

							_
	RFQ	DTL	SDTL	ACS	SCC		
Output energy	3	50	200	404	600	MeV	
Frequency	324	324	324	972	972/648	MHz	
Total length	3.1	27.1	98.4	92.1	110	m	
Structure length	3.1	26.7	70.9	63.2	34.1	m	
Number of tank	1	3	34	42	42		
Number of cell		146	170	636	294		
Accelerating fiel	d		2.5~2.9	2.5~3.7	4.4~4.8	7.5~8.4	M
Stable phase	-30	-30	-27	-30~ -44		deg	
Vane voltage	82.9(1	.8KL)				kV	
Drive power	0.336	3.3	16.5	22.1		MW	
Beam power	0.148	2.4	7.5	10.2	9.8	MW	
Total power	0.484	5.7	24.0	32.3		MW	

Ipeak=50mA, beam pulse length 500 µsec Repetition frequency 25/50 Hz KL=Kilpatrick limit

Injection beam into DTL (1)

- Two types of beams: Type-C & RFQ
 -beam
- Beam parameters for the matched

	E C A I A zrms		σ_x / σ_{x0}	$\sigma_{x0} \sigma_{z0} \sigma_{z0}$		μ_{x}	K_z/K_{z0}	μ_z
	mm-mrad	MeV-deg	deg	deg				
C-30mA	0.2	0.14	42/58	19/31	0.72	0.48	0.61	0.62
C-50mA	0.2	0.15	36/58	15/31	0.62	0.61	0.49	0.76
rfq-30mA	A 0.16	0.08	38/58	14/31	0.66	0.57	0.44	0.80
rfq-50mA	A 0.16	0.08	32/58	10/31	0.55	0.70	0.32	0.89

Injection beam into DTL (2)

Injection beam into DTL (3)

RFQ direct (xy-match)

C-type

Injection beam into DTL (4)

Emittances of the input beams

	C-x	RFO-x	C-y	RFO-y	C-z	RFO-z
rms	0.0198	0.0164	0.0198	0.0161	0.140	0.0830
90%	0.0842	0.0703	0.0847	0.0693	0.597	0.348 99% 0.125 0.108

(cm-mrad) (MeV-deg)

Beam matching

three kinds of solution

- Matched beam parameters by calculation
- Rms matching by test simulation
- Minimizing rms or 99.9% emittance growth by test simulation

No error simulation: C-type

JHF/JAERI LINAC

No-error simualtion: RFQ (xyz)

JHF/JAERI LINAC

No-error simulation: RFQ (xy)

13

Errors in accelerating parameters

- Error 1
 - $-\pm1\%$ cell and tank fileds
 - ±1% cell phase and ±3% tank phase
 - Q-magnet displacement ±0.05 mm
- Error 2
 - $-\pm2\%$ cell and tank fields
 - $-\pm2\%$ cell and $\pm6\%$ tank phase
- JHF/JAERI LINAC Q-magnet displacement ± 0.1 mm ¹⁴

Error - 1 simulation: Type C

JHF/JAERI LINAC

Error - 2 simulation: Type C

JHF/JAERI LINAC

Error - 1 simulation: RFQ xyz-match

17

Rms emittance growth

99.9% emittance growth

Black = no-error, red = error-1

C-type

Energy shift

Error - 1

Beam-center shift

21

Lost particles

Beam halos - transverse C

Beam halos - transverse RFQ

Output emittance - transverse

x-xd

	C-noerr	C-err-1	C-err-2	rfq-noer	· rfq-err-	1 rfq-err-2	rfq-x	у
rms	0.0259	0.0299	0.0628	0.0268	0.0339	0.0687	0.0264	-
0.0225	5							
90%	0.112	0.132	0.283	0.104	0.145	0.306	0.104	0.0962
99%	0.281	0.281	0.826	0.490	0.511	0.950	0.482	0.249
99.9%	0.574	0.497	2.06	1.01	1.06	1.83	1.01	0.623
							у-у	a
	C-noerr	C-err-1	C-err-2	rfq-noer	r rfq-err-	1	rfq-err-2	rfq-xy
rms	0.0251	0.0326	0.0626	0.0248	0.0371	0.0805	0.0247	0.0223
90%	0.108	0.148	0.271	0.0995	0.166	0.344	0.0988	0.0926
99%	0.228	0.255	0.734	0.360	0.391	1.14	0.362	0.237
99.9%	0.640	0.501	1.37	1.07	1.02	2.02	0.870	0.673

Beam halos - longitudinal C

Beam halos - longitudinal RFQ

Output emittance dpdw

	C-noerr	C -err-1	C -err-2	rfq-noerr	rfq-err-1	rfq-err-2	rfq-xy
rms	0.494	0.793	3.23	0.374	0.871	3.60	0.361 0.354
90%	2.04	3.44	8.77	1.44	3.74	10.3	1.40 1.40
99%	5.26	6.80	19.2	6.39	10.7	25.7	5.90 6.35
99.9%	12.6	10.4	66.1	17.2	15.6	75.5	19.1 12.3

- 各タンクの電場と位相とが独立に決められる事
- 精度目標 ±1%、1 degree
 - 電場のエラーは位相補償で相殺できる?
 - 出来るが程度により副作用をともなう

Phase compensation in SDTL

Output energy width

	c-noerr	c-err-1	c-err-2	rfq-noerr	rfq-err-1	rfq-err-2	rfq-xy	
Rms	0.193	0.304	0.343	0.146	0.348	0.381	0.140	MeV
Full	2.13	2.26	3.24	2.25	2.36	4.94	2.10	Mev
Loss	0	0	0.1	0	0	0.04	0	%

Debuncher operation

Fig. 4.35 Variation of spreads of phase (in terms of 972 MHz) and energy along the 400-MeV beam-transport line. A debuncher of 2.1 MV is placed at a position of 20 m from the entrance of the beam-transport line. The peak current of 180 mA is assumed. The number of particles is 3200.

Fig. 4.36 Variation of spreads of phase (in terms of 972 MHz) and energy along the 400-MeV beamtransport line. Two debuncher are used. The voltages are 2.1 and 0.6 MV. They are placed at a position of 20 and 42.5 m from the entrance of the beam-transport line. The peak current of 180 mA is assumed. The number of particles is 3200.

Compensation for errors

- Bunch phase measurement at each-tank exit
 - Minimizing energy deviation by adjusting rf phase
- Bunch profile/center measurement
 - Minimizing beam-center deviation by steering
 - Correction of Q-magnet alignment if necessary
- Energy-width compression by debuncher
- Energy compensation by a low-Q cavity if necessary

Future improvements

- ACS
- Beam transport to the rings
- Matching methods
- Supercomputer of 10 times ability (March)
- Survey of transverse focusing parameters
- Link to the beam measurements
- Easy access to simulation system

Focusing parameters: DTL

Focusing parameters: SDTL

Focusing parameters for 50-mA RFQ beam

	Energy	μχ	μΖ
DTL	3	0.69	0.90
SDTL	50	0.75	0.90
ACS	200	0.77	0.81
ACS	395	0.57	0.87

Equivalent RFQ beam

Em-growth of equivalent RFQ beam

Two kinds of error-2

Q-mag error

Field error

Max & Mini. Phase

Field error

Q-mag error

Max & Mini. Phase error-1

Tuning of ACS injection

bz=26

bz=18

Emittance growth: RFQ-beam xy-match injection

x-xd

dpdw

Energy deviation

電場強度エラー(セル及びタンク双方 に±3%)と位相エラー(セル及びタンク 双方に±3度)の5種類のエラー分布に 対する平均エネルギーの変化。

Injection generated in ACS code

x-xd

Injection beam

	E _{xrms}	E _{zrms} MeV-deg	σ_x / σ_{x0}	σ_z / σ_{z0}	k _x /k _{x0}	μ_{x}	k_z/k_{z0}	μ_z
C-30mA	0.2	0.14	42/58	19/31	0.72	0.48	0.61	0.62
C-50mA	0.2	0.15	36/58	15/31	0.62	0.61	0.49	0.76
rfq-30mA	0.16	0.08	38/58	14/31	0.66	0.57	0.44	0.80
rfq-50mA	0.16	0.08	32/58	10/31	0.55	0.70	0.32	0.89

Table 5 Two kinds of injection beams used for the simulations.

	Type A Type B					
rms transverse emittance	0.187	0.375	pmm.mrad			
rms longitudinal emittance	0.133	0.266	pMeV.deg			

MEBT

ZTT

収束法

Equipartitioning

$$\gamma_0 \frac{\varepsilon_{nx}}{\varepsilon_{nz}} \frac{Z_m}{a} = 1 \qquad \frac{k_x \varepsilon_{nx}}{k_z \varepsilon_{nz}} = 1 \qquad \varepsilon_{nx} \sigma_x = \varepsilon_{nz} \sigma_z$$

$$T_{\perp} = T_{\parallel}$$

$$\tilde{\varepsilon}_{nx} = \tilde{x} \left(\frac{\gamma_0 k_B T_{\perp}}{mc^2} \right)^{1/2} \quad \tilde{\varepsilon}_{nz} = \tilde{z} \left(\frac{\gamma_0^3 k_B T_{||}}{mc^2} \right)^{1/2}$$

$$\frac{\mathbf{k}_{\mathrm{x0}}}{\mathbf{k}_{\mathrm{z0}}} = \left(\frac{3}{2}\frac{\varepsilon_{\mathrm{nz}}}{\varepsilon_{\mathrm{nx}}} - \frac{1}{2}\right)^{1/2}$$

JHF/JAERI LINAC

Beam halos in RFQ beam

RFQ calculated beam

LINSAC DTL results

Here, halo-like particles are defined by those in the outside of 12.5 times the longitudinal output rms emittance.

400-MeV linac

