DTL-SDTL 間横マッチング (F-1)

2001.7.16 T. Kato

まとめ

DTL-SDTL 間の横マッチングの例を示す。ビーム半径があまり小さくならないように、長い部分にわたってマッチングを達成する方法が好ましい。実際のチューニングは、DTL 出力ビームのエミッタンス測定及び SDTL タンク間に設置するビーム幅モニターにより行う。

1. はじめに

DTL と SDTL の接続は 1βλの空間で行っている。周波数が同じなので、縦方向のマッチングは電場の調整(デザイン)により行う。横方向収束に関しては、DTL から SDTL に変わる事により、 大きな変化があるので、この部分の収束磁石をチューニングしてマッチングを達成しなければな らない。ここでは DTL 最後部のラティスと SDTL 入射部のラティスを TRACE3D により接続する 事を試みた。その結果を粒子シミュレーションで追試した。

2. マッチングの具体的方法

DTL 側: DTL 最後の端板の磁石を含めて5個の磁石を使う。
 SDTL 側: SDTL タンク3の後ろまでにある6個の磁石を使い、SDTL-4のタンク入り口でマッ
 チングがとれる状態とする。DTL と SDTL の境において、適当なエミッタンスの形を仮定し、その前後でマッチングを達成させる。

3. パラメータ

関連するパラメータを表1に示す。計算上では、DTLの磁石長さはセルの半分となっており、製作している長さとは異なる。図1に TRACE3D 出力を示す。DTL/SDTL 部最大ビーム半径は 3.9/7.7mm(5σ)となっており、ボア半径 13/18mm に比べて余裕がある。表2に DTL 最後部のパラ メータ、表3に SDTL 入射部のパラメータを示す。

4. チューニングの概略

実際のチューニングでは、第5節のシミュレーションで示すように、部分的なマッチング計算に よりパラメータを決めれば、ある程度のマッチングは達成出来る。しかしながら、DTL 入射条件 等が変化する可能性が高いので、DTL 出力エミッタンスの測定を基礎にする事が望ましい。

1) DTL 出力ビームのエミッタンスを知る事

ビーム立ち上げの毎回必要とは言えないが、チューニングの基準となるエミッタンスと twiss parameters に関する知見が必要となる。この測定には、SDTL タンクをはさんでスリットとデ テクターを置く方法、あるいは SDTL 入射部の複数個のプロファイルモニターを使って行う

方法が考えられる。

- SDTL 入射マッチビームエミッタンスの測定
 SDTL-4 以後の場所にてエミッタンスを測定する。
- 3) 慣れてくれば、前項の変わりに、複数のビーム幅測定でマッチングが達成出来ると思われる。 運転中のモニターは non-destructive のビーム幅モニターとなる。
- 4) SDTL 出口のビームの広がり
 ミスマッチによるビームの横方向の広がりをサーベイする事は、fine-tuning を行う上で、有
 効と思われる。その為に、SDTL 出口付近の感度の高いプロファイルモニター(叉はスクレ ーパー)を考慮する。

表1 DTL-SDTL マッチング時の磁石パラメータ(例)。第3DTL タンクの磁石番号は、セル番号+3 となっているので、数え方に注意の事。

名称	T/m (design)	T/m (after matching)		
Q144	15.38	15.38		
Q145	-15.30	-16.0		
Q146	15.09	13.503		
Q147	-15.0	-8.76		
Q148	14.91	16.74		
Q149 (端板, full)	-14.83	-13.07		
Drift space	218.5 mm			
SDTL1				
QS-1	21.85	-18.47		
QS-2	-21.85	22.0		
SDTL-2				
QS-3	22.18	8.43		
QS-4	-22.18	-15.75		
SDTL-3				
QS-5	22.85	20.82		
QS-6	-22.85	-18.95		

図1 TRACE3DによるDTL-SDTLマッチング例。DTLセル141からSDTLタンク4の入り口まで。

表 2 DTL 後部のデザインパラメータ、セル 141 から 146 まで。

NC=cell number, DD1=half-drift length, DD2=half-drift length, T=TTF, DV=E0TL, DW=E0Tlcosf, Win=injection enertgy, Wout=output energy, H2=magnetic field gradient, DQ2=q-magnet length, WS2=beam energy

141 0.1538500D+04 0.7070905D+01 0.4750483D+02 NC H2 DQ2 WS2

142 0.1538500D+04 0.7070905D+01 0.4750483D+02 NC H2 DQ2 WS2

142 0.7112449D+01 0.7135449D+01 0.6900318D+00 0.1166237D+01 0.5112448D+00 0.4750483D+02 0.4801607D+02 NC DD1 DD2 T DV DW Win Wout

142 -0.1529500D+04 0.7106268D+01 0.4801607D+02 NC H2 DQ2 WS2

143 -0.1529500D+04 0.7106268D+01 0.4801607D+02 NC H2 DQ2 WS2

143 0.7147684D+01 0.7170594D+01 0.6889143D+00 0.1170124D+01 0.5129485D+00 0.4801607D+02 0.4852902D+02 NC DD1 DD2 T DV DW Win Wout

143 0.1508500D+04 0.7141515D+01 0.4852902D+02 NC H2 DQ2 WS2

144 0.1508500D+04 0.7141515D+01 0.4852902D+02 NC H2 DQ2 WS2

 144
 0.7182812D+01
 0.7205642D+01
 0.6879700D+00
 0.1174270D+01
 0.5147660D+00

 0.4852902D+02
 0.4904378D+02
 NC DD1
 DD2 T
 DV DW Win Wout

144 -0.1499500D+04 0.7176656D+01 0.4904378D+02 NC H2 DQ2 WS2

145 -0.1499500D+04 0.7176656D+01 0.4904378D+02 NC H2 DQ2 WS2

 145
 0.7217836D+01
 0.7240574D+01
 0.6868432D+00
 0.1178069D+01
 0.5164315D+00

 0.4904378D+02
 0.4956022D+02
 NC DD1
 DD2 T
 DV DW Win Wout

145 0.1490500D+04 0.7211689D+01 0.4956022D+02 NC H2 DQ2 WS2

146 0.1490500D+04 0.7211689D+01 0.4956022D+02 NC H2 DQ2 WS2

1460.7252739D+010.7275383D+010.6855509D+000.1181545D+010.5179554D+000.4956022D+020.5007817D+02NC DD1DD2 TDV DW Win Wout

146 -0.1483000D+04 0.7246604D+01 0.5007817D+02 NC H2 DQ2 WS2

表3 SDTL 入射部デザインパラメータ

tank N	C CI	L	V	DW	Ez	Т	phi	CL/2
	cr	n	MV	MeV	MV/cm			
1	29.13	211	0.60418	0.53833	0.02530	0.81973	-0.47124	14.56605
2	29.27	587	0.60639	0.54030	0.02530	0.81870	-0.47124	14.63793
3	29.41	921	0.60859	0.54226	0.02530	0.81766	-0.47124	14.70961
4	29.56	214	0.61078	0.54421	0.02530	0.81663	-0.47124	14.78107
5	29.70	464	0.61288	0.54608	0.02530	0.81551	-0.47124	14.85232
dri	ft	12.78	045 cm					
q-n	nag	9.	00000	2185.00000	cm gauss /	cm		
dri	ft	16.00	000					
q-n	nag	9.	00000	2185.00000				
dri	ft	12.78	045					
ТО)Tlg	206.	65487					
6	29.84	671	0.61495	0.54793	0.00000	0.81437	-0.47124	14.92336
7	29.98	835	0.61701	0.54976	0.00000	0.81324	-0.47124	14.99417
8	30.12	956	0.61906	0.55159	0.00000	0.81212	-0.47124	15.06478
9	30.27	034	0.62111	0.55342	0.00000	0.81102	-0.47124	15.13517
10	30.41	069	0.62315	0.55523	0.00000	0.80992	-0.47124	15.20535
dri	ft	13.48	553					
q-n	nag	9.	00000	2218.00000				
dri	ft	16.00	000					
q-n	nag	9.	00000	2218.00000				
dri	ft	13.48	553					

TOTlg 418.27159

11	30.55	575	0.67467	0.60114	0.02530	0.80879	-0.47124	15.27788
12	30.70)625	0.67699	0.60320	0.02530	0.80759	-0.47124	15.35312
13	30.85	5624	0.67928	0.60524	0.02530	0.80638	-0.47124	15.42812
14	31.00)575	0.68155	0.60727	0.02530	0.80518	-0.47124	15.50287
15	31.15	5475	0.68379	0.60926	0.02530	0.80397	-0.47124	15.57738
dı	rift	14.23	439					
q	-mag	9.	00000	2285.00000				
dı	rift	16.00	000					
q	-mag	9.	00000	2285.00000				
dı	rift	14.23	439					
Т	OTlg	635.	.01912					

5. シミュレーション

DTLの最後の5個の磁石を前節の計算結果(表1)を使って変え、SDTLの最初の3組の磁石も 同様に変化させて、DTL+drift-space+SDTLの粒子シミュレーションを行った。結果を図2-5に示 す。このシミュレーションは、TRACE3Dによるアクセプタンス計算の結果が、(充分ではないが) 解となっている事を確かめたという程度の意味なので、細かい点は今後の課題とする。

図2 rms ビーム半径

図 3 rms,90,99%エミタンスの変化

図4 x-x'出力

