# Acceleration of deflected particles during transient periods of the chopper operation 2001.3.9 T. Kato

結論:SDTL 以降では、チョッパーの過渡部分に起因する粒子損失はないと予測する。

1. はじめに (まとめ)

チョッパーの定格電圧により蹴られた粒子は、MEBT スクレーパによりカットされる。チョッパー 電圧の過渡的な期間中、不十分に蹴られた粒子(unstable particle と呼ぶ)は、その蹴られ方に応じて次 の3種類の振る舞いをする。

- 1) MEBT スクレーパによりカットされる。
- 2) DTL のアクセプタンスからはずれて、DTL でロスする。
- 3) DTL を通過した粒子は、SDTL、ACS を通過して、ロスせずに最後まで加速される。

DTL を通過した粒子(第3項)については、以下の結論となった。

- 1) その後のリニアックにおいてロスする事はないと予測する。
- 2) 正常なバンチと比べると、そのエミッタンスの位置がずれているので、加速管のエラーに対して は敏感となっている。
- 3) 横エミッタンスを制限する為の L3BT のスクレーパでカットする事は可能と思われる。
- 4) 前項のカット粒子数を減らす事に意味があるとすれば、SDTL のタンクの間にスクレーパをおいて、実現出来る。SDTL スクレーパがカットする unstable particles の割合は、unstable particles 全体の約47%となり、MEBT 入射電流のおよそ0.11%である。

本項では、チョッパーの過渡状態で蹴られたバンチの SDTL(191MeV)までのシミュレーション結果 を示す。SDTL には2台のスクレーパを設置した(S4(62MeV)、S7(72MeV)タンクの後)。スクレー パ位置は normal bunch に対してはビームロスがないように選んだ。チョッパー過渡電圧は、定格の、 0.65、0.5、0.4、0.3、0.1 倍の5種類を選んだ。これは KEK Report 97-16 p.4-13 に拠っている。MEBT のシミュレーションは数年前の粒子数 3200 個の結果を利用した。なお、以前に行った粒子数が 9600 個の MEBT 計算結果は、現在行方を検索中なので、それが見つかった時点で、追試補完を行う予定。

#### 計算結果

2.1 計算仕様とビームの性質

電流: 50 mA、各種エラーなし、x,y,z のマッチングをさせて後続の加速管に入射。MEBT 入射粒子数 3200。

SDTL 出射ビーム x-emittance (normalized)

rms: 0.234 pi mm-mrad 100%: 5.22 pi mm-mrad

| RFD voltage | MEBT out | DTL out | SDTL out | 生存率    |
|-------------|----------|---------|----------|--------|
| 0.1         | 3174     | 3174    | 3142     | 0.982  |
| 0.3         | 2889     | 2561    | 1831     | 0.572  |
| 0.4         | 2436     | 1377    | 766      | 0.239  |
| 0.5         | 1790     | 379     | 170      | 0.053  |
| 0.65        | 808      | 16      | 8        | 0.0025 |

2.2 加速管の各ステージでの生存粒子数

以前に行った DTL のタンクの間にスクレーパを置く場合の結果に比べると、生存率は2倍程度悪い結果となっている。

## 2.3 出射ビームエミッタンス

それぞれの場合の SDTL の出力エミッタンスを図1-図5に示す。外側の緑の丸円は、エミッタンス(20pi mm-mrad) が出射時に占める範囲を示している。これは SDTL のアクセプタンスの約半分の値 である。赤丸は normal bunch。青丸は chopped bunch。





図 2 RFD=0.3。





図4 RFD=0.5。





図7 SDTL 内のビーム損失位置(RFD=0.4 の場合)。

DTL内のビーム損失の分布を図8に示す。ここでは、各RFD電圧の場合のビーム損失を積算している。



図8 DTL内のビーム損失の分布。

2.4 ビーム損失の程度

チョッパーの負荷QL が 10 の場合には、チョッパー電圧の立ち上がり時には、RFD=0.4 と

RFD=0.65 を考えればよく、立ち下がり時には、RFD=0.5 を考えればよい(KEK Report 97-16)。実際には、増幅器の立ち上がり特性が 15 nsec 程度とすれば、全体としての立ち上がり特性は劣化するので、 QL=10 の場合に得られた結果を2倍する事で対応する(QL~15-20を想定)。2001 年 5 月には、実際のチョッパー空洞の特性測定が予定されている。



図 QL=10の場合のチョッパー空洞波形。

2.4.1 SDTL スクレーパによるビーム損失

表にスクレーパでのロスをまとめた。実際には、この2倍以上が予想される。ここでは、チョッ プする前の平均電流を比較の基準とする。

|           | Loss ratio | Loss current | Loss power | Particle |
|-----------|------------|--------------|------------|----------|
|           |            |              |            | energy   |
| Scraper-1 | 4.4E-4     | 0.55 micro A | 34 W       | 61.6 MeV |
| Scraper-2 | 6.4E-4     | 0.80 micro A | 58 W       | 72.2 MeV |

SDTL 出口の unstable particles の割合は、0.12%となる。実際には、この2倍以上が予想される。

#### 2.4.2 DTL 入り口のビーム損失

平均ビームロス電流は 5.4 micro A、ロス電力は 16W となる。実際には、この2倍以上が予想される。

## 3. 考察

図3と図6を比べると、スクレーパの働きがわかる。スクレーパ位置とnormal beam size との間には、

まだ余裕があるように見えるので、スクレーパの効率を更に最適化する事は可能と思われる。今回の シミュレーションでは、normal beam には全く影響がないようにスクレーパ位置を決めたので、こうし た結果となったと思われる。

今回の計算結果より、以下の結論を導いた。

- 不十分にチョップされた粒子は、SDTL アクセプタンスの 50%以内に入っているので、その 後のリニアック中でロスとなる事はない。DTL と SDTL に妥当なエラー(電場1度1%、 四極磁石変位 50 micron)を設定してもロスする事はない。
- 2) SDTL の間にスクレーパを設置するかどうかは、ビームロスによる放射化をどのように分布 させるかという観点から決める事が適当である。
- DTL入り口での unstable particles のロス対策として、DTL タンクの入り口にビームストッパーを設けるとよい。メンテナンス等に便利と思われる。