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Subjects requested by ATAC2002 committee

• Investigation of the pulse-to-pulse energy
variation.

• Progress of the vibration and error analysis.
• The effect of the tapered gradient of the ACS

for dedicated matching.
• Estimation of the halo generated from the

chopper transit, and the solution to avoid the
partially kicked beam through the linac.

• End-to-end multi-particle simulation.
• L3BT modification
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Linac design and operation (basic idea)

• Tunable operation is necessary
– Against peak-current variation
– Against errors: Machine, Beam, Tuning

• Variable and sufficient focusing strength
– Against strong space-charge effects

• Tuning of the transition part
– Achieve matched injection
– Adjust accumulate errors before
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MEBT2 between SDTL and ACS

• Variable matching section between the
SDTL and the ACS is an important knob
for matching and tuning
– Longitudinal transition with three times the

frequency
– Transverse transition with a small change in

focusing length

Therefore, a fixed configuration
(tapered gradient of the ACS) is not adopted
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MEBT design (from RFQ to DTL)

– Beam matching
– Beam chopping

• Some space for the deflecting chopped beam is
indispensable for obtaining sufficient separation

• Chopping
– it costs some emittance growth along the MEBT

» If it is allowable, the MEBT is totally acceptable
– Beam measurement

Three purposes:
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Static and random errors

• Static errors
– Compensation is possible

• Random errors (pulse to pulse or within pulse)
– No effective compensation method

1. Eliminate or suppress random errors from the
linac system

2. minimize static errors
     ---> suppress mode mixing

---> construct all components with sufficient
accuracy

3. Use tunable and sufficient focusing systems
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Achieved stability or accuracy (static)

• DTL field distribution ~ ± 1%
• DTL Q-magnet center alignment

– ~within ± 50 mm
• RF structure alignment accuracy ~ ± 50 ~ 100 mm

– According to the preliminary laser experiments
• Water temperature control ~ ± 0.1-0.2 degrees (design)

Achieved results:
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Achieved pulse-to-pulse stability (random)

• RF amplitude and phase variation
– Amplitude < ± 0.3%, phase < ± 0.3 degrees

• Vibration of drift tube due to water flow and pulsed Q-
magnet excitation
– Water flow

• Negligibly small
– Pulse Q-mag. Excitation (1000 A, 50 Hz)

• ~ 1.5 mm
– Simulation is not necessary since the displacement is very

small
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Tuning of the DTL-1 field
(Naito)

Field distribution
   0.989 - 1.018
Accuracy ±0.005 

DTL-1
76 cells
9.9 m 
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Measurements and alignment of DTQ
(Naito)

200 mm

Deviation of the Q-mag
center from mechanical
center
   x   -30 ~ +20 mm
   y   -32 ~ +20 mm

No.119

After installing into DT
  x  -50 ~ +50 mm
  y  -40 ~ +40 mm

Note: Adjust the offset of
No.119 in the installation
into DT.
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RF field stability (Yamaguchi)
experimental results during MEBT beam study
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Required field stability has been achieved by using analog feedback method.
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RF field stability (Michizono)

experimental results of SDTL tank

Digital feedback method

! Stability:̃±0.2％

±0.4%

I/Q measurement

Accuracy:
I,Q components <+-1%
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Pulse to pulse stability in test cavity (Michizono)

±0. 5%

Single pulse Envelope of ~150,000 pulses

The envelope signal (during 1hour 50pps operation)
indicates the stability of less than +-0.3%.

Digital feedback method
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Measurements of DT mechanical vibration
(Sakaki)
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New data Feb. 2003

Old data before modifying
the fixing method of DT
stems.

Displacement in the z-direction 50 Hz component

Peak ~ 0.7 mm at 50 Hz
1000A-50Hz drive

Peak ~ 2 mm at 50 Hz

No problem was found.
However,
Careful watching is
necessary:
1) variation of resonant
    frequency,
2) if there were cooperative
    effects.
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Chopper transient issues

• Experimental results
• Calculated results using

additional scrapers
• Future upgrade plan if required

– Anti-chopper scheme

Taking account of above three items,
there is no serious problem in the
transient chopped beam
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Chopped beam measurements  (June 2002)
experimental results (BPM signal at the exit of MEBT)

Transient rise/fall time  ~10 nsec = 3 micro bunches.
No particles were observed at the MEBT exit during chopper on
time up to 25 mA.
No effects due to chopper system were observed in the normal
beam at the MEBT exit.

10 nsec/div 100 nsec/div
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Transient deflecting field in the chopper
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Transmission ratio of the transient chopped
particles along the linac-simulation results
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Fig. 1 Transmission ratio of the transient chopped bunch
through MEBT and SDTL vs. deflecting field.  A scraper in
the MEBT and two scrapers in the SDTL are assumed.

The calculation was done
in 1997 at first. At that
time, the output energy of
the linac was 200 MeV.
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Transient chopped beam simulation
upto the SDTL
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The emittances of the SDTL output beam.  The large circle indicates
half the SDTL acceptance (20p mm-mrad).  Two kinds of the output
were plotted in the same figure. The red filled circles corresponds to
the normal bunch, while the blue empty circles indicate chopped
bunch.

RFD field =0.1 RFD field =0.4 RFD field =0.65
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Ratio of the transient chopped bunch

• Total number of the transmitted transient
chopped beam at the SDTL exit in terms of a
bunch is 0.445 per one intermediate pulse.

• 0.17% of the incident beam into the MEBT at a
25 Hz and 500 ms operation.

• The equivalent beam power at 400 MeV is 420 W

Assumed deflecting field 0.41 0.65 0.87
Transmission ratio at DTL entrance 0.74 0.25 0
Transmission ratio at SDTL exit 0.22 0.0025 0
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Anti-chopper scheme for improving
transient behavior

TRACE 3-D output of MEBT with an anti-chopper. The
beam profiles in the z, x and y directions are shown. The
coarse line traces the beam centroid deflected by two RF
choppers and two RF anti-choppers. Another buncher and
two choppers are required.

Details are in ref. LINAC-5.
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Summary of transient chopped beam

1. If all transient particles (0.17%, 420W) are cut by the L3BT halo collimator
system (limited to 4 p-mm-mrad), it can be allowed from the viewpoint of
beam dump power (2 kW).

2. Main part of the transient beam arises from the bunch which is deflected by
a deflecting field of around 0.4. In this case, the transient emittance and the
normal one overlap partly. Therefore, some part of the transient beam
passes through the L3BT halo system and reaches to the RCS. It is no
problem, since the emittance is smaller than 4 p -mm-mrad.

3. The estimated transverse acceptance of the ACS is about 70 p -mm-mrad
(100%). Therefore, I think that the acceptance of the ACS is sufficiently
large for accelerating the transient chopped beam.

4. It was shown that the timing of the transient micro-bunch related to the start
time of the deflecting field is very important, since the field level for the
transient chopped beam determines its transmission behavior along the linac.

5. Anti-chopper method will be used if necessary.
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End-to-end simulation including errors

• Modified PARMILA simulation in 1999
– RFQ-DTL-SDTL-ACS
– Including field errors, Q-magnet position

errors
• LINSAC simulation

– MEBT-DTL-SDTL-ACS-L3BTarc2
– Including field errors, Q-magnet position

errors
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Modified PARMILA simulation in 1999

• RFQ-DTL-SDTL-ACS simulation  (25000 particles)
• Two kinds of input particles

– Generated beam (C-type)
– RFQ output beam (RFQ-type)

• Including errors both in transverse and longitudinal
– Error - 1

• ±1% cell and tank fileds
• ±1% cell phase and ±3% tank phase
• Q-magnet displacement ±0.05 mm

– Error - 2
• ±2% cell and tank fields
• ±2% cell and ±6% tank phase
• Q-magnet displacement ±0.1 mm

• Three kinds of injection matching method
– Matched beam parameters by calculation
– Rms matching by test simulation
– Minimizing  rms or 99.9% emittance growth by test simulation
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Input beams
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ACS output beams (Type-1 error)
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Emittance variation (Type-1 error, PARMILA)

C-type injection beam

RFQ injection beam
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Summary of output emittance (PARMILA)

C-input C-err-1 C-err-2 rfq-in  rfq-err-1 rfq-err-2        
rms 0.198 0.299 0.628 0.164 0.339 0.687
90% 0.842 1.32 2.83 0.703 1.45 3.06    
99% 1.25 2.81 8.26 1.08 5.11 9.50
99.9% 1.44 4.97 20.6 1.33 10.6 18.3

C -err-1 C -err-2  rfq-err-1 rfq-err-2
rms 0.793 3.23 0.871 3.60
90% 3.44 8.77 3.74 10.3
99% 6.80 19.2 10.7 25.7
99.9% 10.4 66.1 15.6 75.5

x-x’, p-mm-mrad

DfDW, p-MeV-deg

Details are in ref. LINAC-4.

C-input C-err-1 C-err-2  rfq-in  rfq-err-1 rfq-err-2
rms 0.198 0.326 0.626 0.161 0.371 0.805
90% 0.847 1.48 2.71 0.693 1.66 3.44
99% 1.24 2.55 7.34 1.06 3.91 11.4
99.9% 1.42 5.01 13.7 1.32 10.2 20.2

y-y’, p-mm-mrad
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Type-2 error simulation (PARMILA)

• Some beam losses are observed in the error-
2 simulation
– C-type: 0.1% beam losses
– RFQ: 0.04% beam losses

• Thus, Type-2 error is not acceptable.
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Effects of error distribution (longitudinal)

0

0.5

1

1.5

398 399 400 401 402

rms half full

En
er

gy
 w

id
th

 (M
eV

)

Average output energy (MeV)

1) Accelerating field errors: ±1%,
    1 degree for DTL, SDTL, ACS.
2) Q-magnet: Dx, Dy ±50mm.
3) Change longitudinal error
    distribution in ACS.

Waverage < ±2 MeV
Dw (half full) < 1.5 MeV

If the error is static, the effects can be
compensated along the linac.
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Energy deviation of the 400-MeV linac
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Deviation of the output energy from the design value versus the maximum energy-
oscillation amplitude in the structure for sixty random-error simulations.

Amplitude error: two kinds of cell-
error distribution of ±1%, varied tank
error of ±1%.
Phase error: two kinds of cell-error
distribution of ±1degree, varied tank
error of ±1 degree.

Amplitude error: two kinds of cell-
error distribution of ±1%, varied tank
error of ±0.2%.
Phase error: two kinds of cell-error
distribution of ±1degree, varied tank
error of ±0.2 degree.
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Debuncher operation (1)
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Debuncher operation (2)
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Conclusion: output energy width

• Stability of RF field amplitude < +- 0.3%
• Stability of RF phase                 < +- 0.2 degrees
• Debuncher operation

The requirement of Dp/p < 0.1% can be achieved
without longitudinal collimation system in L3BT.

(Here, short-time stability is considered)

Experimental results satisfy the requirement with
a sufficient margin.
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MEBT simulation results
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MEBT simulation -summary

• Rms transverse emittance growth of 10 - 15%
roughly agrees with the experimental results

• Large growth in 99% emittance
• The above results are allowed from the

viewpoint of final output beam emittance in the
LINSAC simulation

• Simulations using the calculated RFQ beam
were performed in 1999
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LINSAC simulation (400 MeV)

• 3200 & 9600 particles
– No error
– Type-1 random errors

• Field amplitude ±1%,  phase ± 1 deg., deviation of
the Q-magnet position ±0.05 mm

– Type-2 random errors
• Field amplitude ±1%,  phase ± 1 deg., deviation of

the Q-magnet position ±0.1 mm
– MEBT - DTL - SDTL - ACS - arc2 of L3BT

(Type-2 error in PARMILA simulation and that in LINSAC is different)
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Emittance variation along the linac
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Some improvements are planned: tuning in the MEBT2,
tuning of the matching of the transition parts, modification of
the buncher part of LINSAC code.

Type-1 errors: 3200p, MEBT-DTL-SDTL-MEBT2-ACS



39JPL

Summary of ACS output emittances (LINSAC)

                                      p -mm-mrad                             p-MeV-deg    MeV      MeV
                      xrms   x90   x99      yrms   y90    y99    zrms  z90  z99   dwrms  dwmax

INPUT         0.199  0.814 1.06     0.201  0.816 1.09
3200particles
a107no-error    0.371  1.63   3.35     0.390   1.71  4.10    0.874 3.80 8.81    0.258   1.18

b108 error-1     0.416  1.93   4.03     0.434  1.95   4.40   1.01   4.42 9.52    0.427   1.39

b113 error-2     0.500  2.28  4.74      0.522   2.41   5.12   1.28   5.57 14.8    0.314   1.35

9600 particles
a109 no-error    0.391  1.75   3.86     0.388   1.72   3.81   0.886  3.89 9.07   0.258  1.17

Error-1: ±1%, ± 1deg, ±0.05 mm Error-2: ±1%, ± 1deg, ±0.1 mm
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L3BT simulation (LINSAC)

• ACS output beam was injected into L3BT
• Up to the arc-2 for three kinds of  Q-magnet position

errors: no error, ± 0.05 mm and ± 0.1 mm

99% emittances at the entrance of
L3BT and the exit of the arc-2.
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Simulation codes for JPL (plan, near future)

Availability of input files:

MEBT1 DTL SDTL
PARMILA Ready Preparing Ready
IMPACT Ready Preparing Ready
LINSAC Ready Ready Ready

MEBT2 ACS L3BT
PARMILA Ready Ready Ready
IMPACT Ready Ready
LINSAC Ready Ready Ready

Further detailed and systematic simulation studies are planned
after designing urgent issues for construction.
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L3BT new design

• Suppress strong space-charge effects with an
equivalent 150 mA beam

• Suppress emittance growth along the L3BT
• Use tuning-free arc-1 for a varied peak current
• Satisfy requirements from RCS injection
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Solution

• No use of  longitudinal collimation system
– Not necessary, judging from estimation of Wave, DW

and acceptable energy range of debuncher operation
– Avoid undesirable effects due to combination of large

dispersion, large beam size and the strong space-
charge effects, arising from the arc section

• Use Double Bend Acromatic (DBA) lattice for
90-degree Arc section
– Use sufficient focusing strength,
– Avoid effects due to large dispersion combined with

the space-charge effects
– Tuning free from change of peak current
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L3BT layout

NEW DESIGN FEATURES:

1. No longitudinal collimation
       system
2. Double bend acromatic
   lattice for the first 90 deg. arc.
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L3BT lattice
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Double Bend Acromatic lattice (DBA) for arc-1

0 mA, after tuning 150 mA, the same tuning for 0 mA
beam

b and h functions

A change in the beam parameters due to
variation of the peak current is small.
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PARMILA simulation results (Matsuoka)

Input beam to L3BT. Output beam from L3BT

Table 2-1-5-1 Beam parameters at the injection point.
Simulation result Requirement

Transverse emittance (99.9%)
Horizontal 1.8 p*mm*mrad 4 p *mm*mrad
Vertical 1.9 p *mm*mrad 4 p *mm*mrad
Momentum spread ±0.078%  ±0.1%
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Summary

• Basic design principles are explained.
• Progress in construction and simulation is

summarized from the viewpoint of stability and
errors.

• Transient chopped beam issues and analysis are
reported.

• Multi-particle simulation studies are summarized.
• L3BT new design is presented.


