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STABILITY OF THE STANDING-WAVE ACCELERATING STRUCTURE
STUDIED WITH A COUPLED RESONATOR MODEL

YOSHISHIGE YAMAZAKI
National Laboratory for High Energy Physics
1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305, Japan

Abstract A coupled resonator model is used to study field stability of the 0, =,
7/2, and 27/3 mode standing-wave accelerating structures against effects due to
beam loading and manufacturing imperfections. The beam loading is taken into
account for the case that a phase shift due to beam loading is compensated by
detuning a resonant frequency. Approximate analytical solutions are presented.

INTRODUCTION

As higher energy and higher beam current are required for proton linear accelerators,
accelerating structures have to be more stable against high power dissipation and heavy
beam loading. An alternating periodic structure (APS)!-2 sometimes refered to as a
biperiodic structure operated in a 7/2 stading wave mode has relative immunity from the
beam loading and detuning effects while sacrificing little in shunt impedance compared to
7 mode operation in a uniform periodic structure. A triperiodic structure3 operated in a
271/3 mode will have some advantages by eliminating one out of two coupling cells. In
this report a coupled resonator model4- extensively used to analyze behavior of the 71/2
mode is extended to the 21/3 mode and used to present analytic expressions, although
approximate, for the effects due to the beam loading and manufacturing imperfections.
The analytic expressions will be useful to choose a suitable structure for a specific
accelerator and to make trade-off between possibly conflicting requirements.

COUPLED RESONATOR MODEL
Various physical systems are characterized by an equation
., (0] 1 .K .
[ (“’—P- —'?Du)"‘a]xu =“J§(xu+1+xu-1)+(%ﬁlu ) 1)
which is refered to as a coupled resonator model4> equation here. The parameter xy, is

proportional to a square root of a stored energy® of the p-th oscillator or in the p-th cell
with a resonant frequency wy. The second term of the Lh.s. represents a damping of the



Y. YAMAZAKI

oscillator characterized by the quality factor Qu. the first term of the r.h.s. stands for
couplings with the neighboring cells, and the last term is a driving force. From now on,
suffices a, m and c, [ instead of the suffix p will be appended to parameters for the
accelerating and coupling cells, respectively, and the cells will be numbered as the m-th
accelerating cell or /-th coupling cell. Then, relations of m and / with p are dependent
upon a phase shift 8: p=mforB=0orn, u=2m- 1 for B = n/2, U =[(m-1)/2] +
m for B = 2n/3, u = 2/ for B = /2, and W = 3/ for B = 2n/3, where [y] denotes an
integral part of y. To make xam positive we modify phases of Xa,m'S @S Xam = (—)M-1
xy, except for B = 0, and for convenience phases of Xc,I's are also modified as x¢ ;= (-)*
1 xy and xc;=— xy, for B = n/2 and 2n/3, respectively.
Further we introduce parameters defined by

— l _®W = ®am l W O
Aam = _K(wa,m e )+K(mo—(o )—cosB , @)
1l o _oc
= = _Zalhy _ , 3
Acy K(ﬁ)c, ] "o ) —cosB €)
1
am = )
KQa,m
1
B¢, = ; (5)
kQq,1
Xam = 1+ Qam (= =291 Xam —Ramiam ©6)

where «, is a resonant angular frequency of the accelerating mode. A phase relation
between i m and iy, is given by the same one between Xa,m and x,. In the case of the 1t/2
mode the parameters Ay iy and A are identical to Ay, defined in Ref. 5 except for the
second term of the r.h.s. of €q. (2). This term is introduced for convenience to take the
beam loading effect into account together with the other terms than Xam in €q.(6).

It is noted that the parameters Ay m and A ; are approximately given by Aam =
Ama,m/(Amp/2) and Awg = Aag,i/(Awp/2), respectively, in the case of |‘°"°u| << @y,
where Awp = xw, is a passband width and Awam = 03 m — 03 and Awc) = ¢ — 0y are
deviations of the cell frequencies from the average value w,. Also da,m = 3wa,m/(Awp/2)
and 8¢, = Sac,i//(Awp/2), where 8wam = 0a/(2Qa,m) and dwc,l = wa/(2Qc,1) are half
widths of the resonances or damping rates of the cells. Since the passband width is
proportional to a group velocity, the parameters 8a,m and &¢ are damping rates as
measured by the group velocity.

In terms of the parameters introduced above, fields Xa,m and Xxc can be
expressed as follows?. For the 0 and © modes
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l
Xam—Xal = £2 P 21 (AanXan+j8anXan - €]
= n=

Here, signs of * correspond to the 0 and 7 modes, respectively. For the /2 mode,

l
Xel = 2 z . (Aam Xam +]j dam Xam) ¢))
m=
m-1 . l .
Xam—Xa,1 = —4 121 (Acg +3dc1) Zl (Aan Xan +j8anXan) - ©)
= n=
For the 2n/3 mode,
2 .
Xc]l = 2 2z . (Aa,m Xam +j 8am Xam) (10)
m=
(m-1)/2 .
Xam—Xa,l = +2 21 (Aa2n Xa2n + j 8a.2n Xa,2n)
n=
(m-1)/2 . 21 _
-4 121 (Ac, g +j8cy) 21 (AapnXan +jdan Xan) (11)
= n=

in the odd m case and

m/2
Xam—Xa,l = — 2 Zl(Aa,Zn-l Xa,2n-1 + ] 83 2n-1 Xa2n-1)
n=

m/2-1 . 21 )
-4 121 (Acy +j8cy) Zl (Aan Xan +jdan Xan) (12)
—3 n:

in the even m case. For the 0 and ®© modes, the parameters A, 1 and Ay N of the end
accelerating cells are modified to compensate effect of absence of cells beyond the end
cells,where N is a number of the accelerating cells. Boundary conditions of x¢ o =0 and

x¢,N =0o0rx¢Np =01lead to

ngl (Aam Xam +j 8am Xam) =0 . (13)
Equations (8) and (9) for the /2 mode are essentially the same as derived in Ref. 5.
Equation (7) for the 0 and 7t modes can be considered as a special case of eq. (9) for the
7/2 mode with &c; =0 and Acj =7F 1/2. Thus, expressions for the 0 and © modes will
be omitted from now on.

If the cavity is drived at the k-th accelerating cell by a driving current iq that is
defined real, then
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lam = iddm +ip el®m | (14)

where ip is a @-component of the beam current and ¢py, is a phase of the beam current at
the m-th accelerating cell. Since the current ia ry is defined so as to drive the cavity, ip is
negative and related to the beam current iy as ip = — 2.

RESULTS OF FIRST-ORDER APPROXIMATION

In principle iterations for egs. (7) — (12) may be made to obtain exact values of the
parameters Xa,m and xc;. However, our purpose is to obtain practically useful
expressions for designing accelerating cavities and estimating their possible
performances. For this purpose the first iteration, that is, the first-order approximation is
accurate enough, where all of x3 m's in the r.h.s.'s of egs. (7) — (12) are made identical
to their average value x,. Also, we assume Qa,m = Qa (8a,m = 8a), Q¢ 1= Qc(Bc;=8c),
Ram =Ry, and ¢y = ¢.

In the absence of the beam loading a resonant frequency wg of a cavity will be
tuned to a frequency o of a driving current. In the presence of the heavy beam loading
wo should be detuned from ® by an amount of

Qa (-~ 2)%a = Raipsing (15)

to keep Xa m real even in the presence of the beam. The detuning is advantageous for
saving the RF power. Then, from eq. (6), (13) and (15) we obtain

53,m Xa,m =8 xa(1-N 5m,k) ’ (16)

where §; is given by
& = 82 (1+Pp/Pc) , a7

Py is beam power per cell given by — (1/2)x,ip coso, and P is power dissipation per cell
given by x2,/(2R,). Effect of the beam loading is just decrease of the Q value, since the
power loss in the accelerating cells arises from the beam loading Py, as well as the power
dissipation Pg.

As seen from egs. (7) — (12) the values of Xa,m — Xa,1 and X ; are quite dependent
upon the distributions Ay m and Ac ;. However, what we are interested in is the case that
the maximum values of xa ;m — x5 and Xc, are obtained for given tolerances. Suppose that
the maximum values of I Aa’m| and |Ac, 1| are given by lAa| and |Ac|, respectively. Then,

the interesting case is that




STABILITY OF THE STANDING-WAVE ACCELERATING

Acy = A foranyl |, (18)
+ Aa for1SmS N2

Aa,m - {
- Ay forN2+1SmS N , (19)

since effects of Agm and Ac are cumulative in egs. (7) — (12). Variation of phase in eq.
(19) is necessary from the condition (13). Substitutions of egs. (16), (18) and (19) in
egs. (7) —(12) lead to values of xam — Xa,1 and X¢ j, whose maximum values are given in
Table I. Since the maximum values of Xa m — Xa and X¢ 7 are dependent upon ratios of
Aa/A¢ to 8,33 or others, those of all terms in X3 m — Xa and X¢ 7 are individually listed in the
table, where the approximation of N >> 1 is used.

Table I
Maximum deviation 5x,® of the i-th term in xa,m — Xa and maximum value
xc® of the i-th term in xc ;. Consider A, and A as positive in this table.
Terms to which a symbol j is attached represent phase diviations in radian. If

tuners are installed at every M accelerating cells (a number of the tuners is
N/M), NA, should be replaced by MA,.

B 72 21/3
xcW/xa NA; NA,
x@fxa NG JN&;
8xa(D/xa (1/2)(NA)(NAR) (1/4)(NA)(NAg)
5xa@/xa (1/4)(N&)(N&p) (1/8)(N3c)(N3p
8x,03)/xa j(1/2)(N5)(NA,) J(1/4)(N&c)(NA)
xa@/x, J(1/4)(NAC)(N&) J(1/8)(NAC)(N&Y)
xaO)/xa — (1/2)NA,
5xa©)/xa — JNG

If the fields xc in the coupling cells are excited, the total Q value Qgor is
decreased as

Qa(ilot tot _ (% _ 1)1_§.-7 R (20)
where

x = (1/3)[(NA)? + (N&p?] for 8 =m2 @0

x = (U6)[(NA)? + (N&p)?] for 8 =2m/3 . 22)

Effect of tuners mentioned in Table I replaces (NAa)? by MNAR2.
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DISCUSSION

It is seen from Table I that the maximum deviations 8x;(® and the maximum values x;(®)
are entirely expressed in terms of the parameters NA,;, NA:, Nt and N§c. The
parameters NA; and NA are the accelerating and coupling cell frequency deviations,
respectively, divided by a half of the frequency difference between the 7/2 mode and the
neighbouring mode that is Awp/(2N). The parameters N8 and N3¢ are ratios of half
widths of resonances to Awp/(2N). Thus, these four parameters can be measures of the
deviations from the ideally periodic and perfectly conducting structure.

It is interesting to note that a pair of adjacent accelerating cells without coupling
cell in between in the 2r/3 mode corresponds to an accelerating cell in the /2 mode.
Coupling cells in the 21/3 mode stabilize stored energies of pairs of adjacent accelerating
cells throughout a tank. Thus, the terms §x,(1) to 8x,4 of the 27t/3 mode are the same as
those of the /2 mode except for the factor two as seen from Table I. It is also seen from
egs. (11) and (12) that the first terms are cancelled out by adding Xa m t0 Xa m+1 With odd
m, resulting in the same form as eq. (9) for the 7t/2 mode.

On the other hand the structure operated in the 27/3 mode has no apparatus to
stabilize the fields between the two adjacent accelerating cells. This effect is expressed
by the first terms in eqgs. (11) and (12) or 8x,0) and §x,(6) in Table I. These terms cannot
be eliminated by achieving the confluent condition A¢ = 0 as the ©/2 mode. Here, it is
interesting to compare 8xa(1) + 8x,(5) of the 27/3 mode with 5x4(1) of the /2 mode. The
former becomes the same as the latter, if NA; = 2. Then, the advantage of the /2 mode
over the 21t/3 mode would be lost. More physical implications of the results obtained
above are detailed in Ref. 7.

The advantage of the triperiodic structure as revealed in Table I and eqs. (21) and
(22) is that the number of coupling cells is a half of that of the APS. Thus, it will be
worthwhile to consider the triperiodic structure in designing future proton linacs, keeping
in mind characteristics of the 21t/3 mode analyzed in this paper.
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