PLA - 92 - 7
97 / 10 / 12

1 GeV リニアック検討資料 1 GeV LINAC DESIGN NOTE

題目 (TITLE)	RFQ とDTL の間のビームライン試案の修正 II
著者 (AUTHOR)	加藤隆夫

概要 (ABSTRACT)

PLA-91-2のビームラインを修正したので報告する。修正の要点は、

- 1. RFQ ビームを曲げるための磁石を、RFQから3番目のドリフトスペースに入れる。
 - その為、ここの長さが5cm 長くなって20cm となった。
- 2. 前項に伴って、他のパラメーターが少し変わった。
- 3. 全長は変わらず 166 cm である。

KEY WORDS:

Ion source, RFQ, DTL, CCL, Magnet, Monitor, Beam Dynamics, Transport, Vacuum, Cooling
Klystron, Low level rf, High power rf, Modulator
Control, Operation, Radiation, Others

RFQ とDTL の間のビームライン試案の修正 II

921012 加藤隆夫

PLA-91-2のビームラインを修正したので報告する。修正の要点は、

- 1. RFQ ビームを曲げるための磁石を、RFQから3番目のドリフトスペースに入れる。 その為、ここの長さが5cm 長くなって20cm となった。
- 2. 前項に伴って、他のパラメーターが少し変わった。
- 3. 全長は変わらず 166 cm である。

修正したビームラインを図 1 に示す。全長は 1.66 m である。途中 0.86 m の位置にバンチャーを設置する。MAGIC で計算した 8 関数を図 2 に示す。

チョッパーを入れる予定の空間にベンドを入れているが、チョッパーは将来の事として、再考する。例えば、RF amp の出力を大きくして一個の空洞で済ますとか。

Table 1 にパラメーターをまとめた。

参考文献

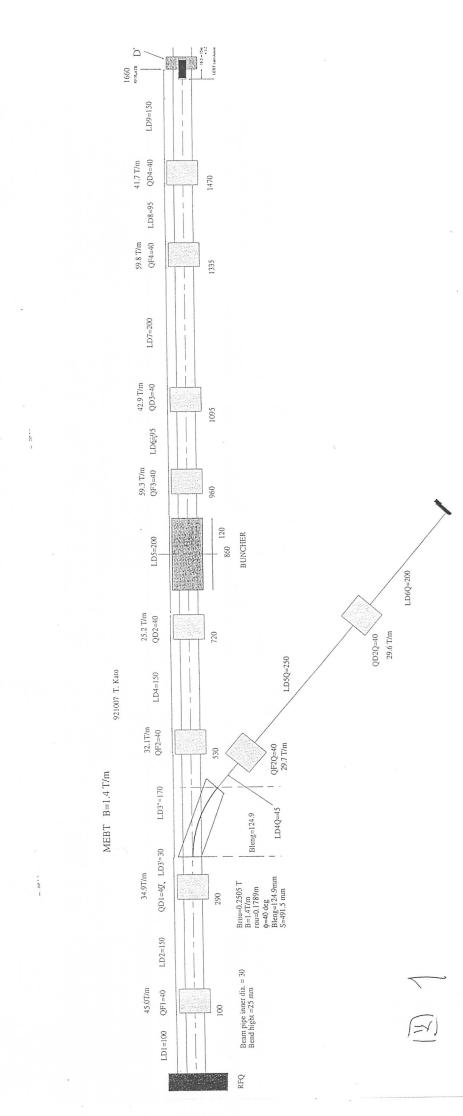

- T. Kato, PLA-89-3, "Space between RFQ and DTL",
- T. Kato, "New design of an RF beam chopper," 7th Symposium on Accel. Sci. and Technology, p.228(1989).
- T. Kato, PLA-89-16, "RFQ とDTL の間のビームライン試案"
- T. Kato, PLA-91-2, "RFO とDTL の間のビームライン試案の修正"
- T. Kato, PLA-92-2, "JHP バンチャーの設計"
- T. Kato, PLA-92-4, "JHP 1 GeV linac 入射部高周波及びビーム加速テスト案"
- T. Kato, PLA-92-5, "JHP ビーム加速用ビームラインの設計における 空間電荷効果の扱い方"
- T. Kato, PLA-92-6, "RFQ ビームラインの試案"

Table 1 Summary of MEBT beam-line parameters. (計算は LD9 までおこなっている) No Bane Length Total Gradient mm length T/m LD1 100 1 100 drift 2 F QF1 40 140 44.99 3 LD2 290 drift 150 4 40 D QD1 330 34.86 5 LD3 30 360 drift 6 LD3' 170 530 drift QF2 570 7 40 F 32.14 8 LD4 150 720 drift 9 QD2 40 760 25.16 D drift 10 LD5 200 960 F 1000 11 QF3 40 59.32 12 LD6 95 1095 drift 13 QD3 40 1135 42.93 D 14 LD7 200 1335 drift 15 QF4 40 1375 59.83 F drift 16 LD8 95 1470 D 17 QD4 40 1510 41.73 LD9 133.5 1643.5 drift 18 19 1645 drift, effective edge LD9' 1.5 20 LD9" 15 1660 drift, half Q-magnet (LD3 に続く) RFQ line 特性 length (mm) name 124.9 BB1.4 T/m, 40 degrees LD4Q 45 QF2Q 40 29.7 T/m LD5Q 250 QD2Q 29.6 T/m 40 LD6Q 20 (about) Twiss parameters of RFQ beam alpha beta beta alpha X y -1.338 13.72 1.725 16.87 Twiss parameters of DTL acceptance alpha beta alpha beta X у

1.219 9.31

-1.944

16.42

j i